Distributed static linear Gaussian models using consensus

Belanovic, Pavle; Valcarcel Macua, Sergio y Zazo Bello, Santiago (2012). Distributed static linear Gaussian models using consensus. "Neural Networks", v. 34 ; pp. 96-105. ISSN 0893-6080. https://doi.org/10.1016/j.neunet.2012.07.004.

Descripción

Título: Distributed static linear Gaussian models using consensus
Autor/es:
  • Belanovic, Pavle
  • Valcarcel Macua, Sergio
  • Zazo Bello, Santiago
Tipo de Documento: Artículo
Título de Revista/Publicación: Neural Networks
Fecha: Octubre 2012
Volumen: 34
Materias:
Palabras Clave Informales: Principal component analysis; Factor analysis; Distributed systems; Consensus; Gossip
Escuela: E.T.S.I. Telecomunicación (UPM)
Departamento: Señales, Sistemas y Radiocomunicaciones
Licencias Creative Commons: Reconocimiento - Sin obra derivada - No comercial

Texto completo

[img]
Vista Previa
PDF (Document Portable Format) - Se necesita un visor de ficheros PDF, como GSview, Xpdf o Adobe Acrobat Reader
Descargar (5MB) | Vista Previa

Resumen

Algorithms for distributed agreement are a powerful means for formulating distributed versions of existing centralized algorithms. We present a toolkit for this task and show how it can be used systematically to design fully distributed algorithms for static linear Gaussian models, including principal component analysis, factor analysis, and probabilistic principal component analysis. These algorithms do not rely on a fusion center, require only low-volume local (1-hop neighborhood) communications, and are thus efficient, scalable, and robust. We show how they are also guaranteed to asymptotically converge to the same solution as the corresponding existing centralized algorithms. Finally, we illustrate the functioning of our algorithms on two examples, and examine the inherent cost-performance tradeoff.

Más información

ID de Registro: 16776
Identificador DC: http://oa.upm.es/16776/
Identificador OAI: oai:oa.upm.es:16776
Identificador DOI: 10.1016/j.neunet.2012.07.004
URL Oficial: http://www.sciencedirect.com/science/article/pii/S0893608012001840
Depositado por: Memoria Investigacion
Depositado el: 10 Ago 2013 09:16
Ultima Modificación: 01 Nov 2014 23:56
  • Open Access
  • Open Access
  • Sherpa-Romeo
    Compruebe si la revista anglosajona en la que ha publicado un artículo permite también su publicación en abierto.
  • Dulcinea
    Compruebe si la revista española en la que ha publicado un artículo permite también su publicación en abierto.
  • Recolecta
  • e-ciencia
  • Observatorio I+D+i UPM
  • OpenCourseWare UPM