Using clustering techniques for intelligent camera-based user interfaces

Bankovic, Zorana; Moya Fernández, José Manuel; Romero Perales, Elena; Blesa Martínez, Javier; Fraga Aydillo, David; Vallejo López, Juan Carlos; Araujo Pinto, Álvaro; Malagón Marzo, Pedro José; Goyeneche, Juan Mariano de; Villanueva González, Daniel y Nieto-Taladriz García, Octavio (2012). Using clustering techniques for intelligent camera-based user interfaces. "Logic Journal of the IGPL", v. 20 (n. 3); pp. 589-597. ISSN 1367-0751. https://doi.org/10.1093/jigpal/jzr008.

Descripción

Título: Using clustering techniques for intelligent camera-based user interfaces
Autor/es:
  • Bankovic, Zorana
  • Moya Fernández, José Manuel
  • Romero Perales, Elena
  • Blesa Martínez, Javier
  • Fraga Aydillo, David
  • Vallejo López, Juan Carlos
  • Araujo Pinto, Álvaro
  • Malagón Marzo, Pedro José
  • Goyeneche, Juan Mariano de
  • Villanueva González, Daniel
  • Nieto-Taladriz García, Octavio
Tipo de Documento: Artículo
Título de Revista/Publicación: Logic Journal of the IGPL
Fecha: Junio 2012
Volumen: 20
Materias:
Palabras Clave Informales: Gesture recognition, intelligent environments, self-organizing maps, unsupervised genetic algorithm
Escuela: E.T.S.I. Telecomunicación (UPM)
Departamento: Ingeniería Electrónica
Licencias Creative Commons: Reconocimiento - Sin obra derivada - No comercial

Texto completo

[img]
Vista Previa
PDF (Document Portable Format) - Se necesita un visor de ficheros PDF, como GSview, Xpdf o Adobe Acrobat Reader
Descargar (962kB) | Vista Previa

Resumen

The area of Human-Machine Interface is growing fast due to its high importance in all technological systems. The basic idea behind designing human-machine interfaces is to enrich the communication with the technology in a natural and easy way. Gesture interfaces are a good example of transparent interfaces. Such interfaces must identify properly the action the user wants to perform, so the proper gesture recognition is of the highest importance. However, most of the systems based on gesture recognition use complex methods requiring high-resource devices. In this work, we propose to model gestures capturing their temporal properties, which significantly reduce storage requirements, and use clustering techniques, namely self-organizing maps and unsupervised genetic algorithm, for their classification. We further propose to train a certain number of algorithms with different parameters and combine their decision using majority voting in order to decrease the false positive rate. The main advantage of the approach is its simplicity, which enables the implementation using devices with limited resources, and therefore low cost. The testing results demonstrate its high potential.

Más información

ID de Registro: 16821
Identificador DC: http://oa.upm.es/16821/
Identificador OAI: oai:oa.upm.es:16821
Identificador DOI: 10.1093/jigpal/jzr008
URL Oficial: http://jigpal.oxfordjournals.org/content/20/3/589
Depositado por: Memoria Investigacion
Depositado el: 11 Ago 2013 08:42
Ultima Modificación: 21 Abr 2016 17:10
  • Open Access
  • Open Access
  • Sherpa-Romeo
    Compruebe si la revista anglosajona en la que ha publicado un artículo permite también su publicación en abierto.
  • Dulcinea
    Compruebe si la revista española en la que ha publicado un artículo permite también su publicación en abierto.
  • Recolecta
  • e-ciencia
  • Observatorio I+D+i UPM
  • OpenCourseWare UPM