Recognising facial expressions in video sequences

Buenaposada Biencinto, José Miguel; Muñoz, Enrique y Baumela Molina, Luis (2008). Recognising facial expressions in video sequences. "Pattern Analysis and Applications", v. 11 (n. 1); pp. 101-116. ISSN 1433-7541. https://doi.org/10.1007/s10044-007-0084-8.

Descripción

Título: Recognising facial expressions in video sequences
Autor/es:
  • Buenaposada Biencinto, José Miguel
  • Muñoz, Enrique
  • Baumela Molina, Luis
Tipo de Documento: Artículo
Título de Revista/Publicación: Pattern Analysis and Applications
Fecha: Enero 2008
Volumen: 11
Materias:
Escuela: Facultad de Informática (UPM) [antigua denominación]
Departamento: Inteligencia Artificial
Licencias Creative Commons: Ninguna

Texto completo

[img]
Vista Previa
PDF (Document Portable Format) - Se necesita un visor de ficheros PDF, como GSview, Xpdf o Adobe Acrobat Reader
Descargar (872kB) | Vista Previa

Resumen

We introduce a system that processes a sequence of images of a front-facing human face and recognises a set of facial expressions. We use an efficient appearance-based face tracker to locate the face in the image sequence and estimate the deformation of its non-rigid components. The tracker works in real-time. It is robust to strong illumination changes and factors out changes in appearance caused by illumination from changes due to face deformation. We adopt a model-based approach for facial expression recognition. In our model, an image of a face is represented by a point in a deformation space. The variability of the classes of images associated to facial expressions are represented by a set of samples which model a low-dimensional manifold in the space of deformations. We introduce a probabilistic procedure based on a nearest-neighbour approach to combine the information provided by the incoming image sequence with the prior information stored in the expression manifold in order to compute a posterior probability associated to a facial expression. In the experiments conducted we show that this system is able to work in an unconstrained environment with strong changes in illumination and face location. It achieves an 89\% recognition rate in a set of 333 sequences from the Cohn-Kanade data base.

Más información

ID de Registro: 1863
Identificador DC: http://oa.upm.es/1863/
Identificador OAI: oai:oa.upm.es:1863
Identificador DOI: 10.1007/s10044-007-0084-8
Depositado por: profesor Luis Baumela Molina
Depositado el: 20 Oct 2009 06:38
Ultima Modificación: 20 Abr 2016 07:03
  • Open Access
  • Open Access
  • Sherpa-Romeo
    Compruebe si la revista anglosajona en la que ha publicado un artículo permite también su publicación en abierto.
  • Dulcinea
    Compruebe si la revista española en la que ha publicado un artículo permite también su publicación en abierto.
  • Recolecta
  • e-ciencia
  • Observatorio I+D+i UPM
  • OpenCourseWare UPM