Latest developments in data analysis tools for disruption prediction and for the exploration of multimachine operational spaces.

López Navarro, Juan Manuel; Murari, A.; Vega, J.; Boutot, P.; Cannas, B.; Dormido-Canto, S.; Fanni, A.; Moreno, R.; Pau, A.; Sias, G.; Ramírez, J.M. y Verdoolaege, G. (2012). Latest developments in data analysis tools for disruption prediction and for the exploration of multimachine operational spaces.. En: "24th IAEA Fusion Energy Conference (FEC 2012). San Diego, USA. 8-13 October 2012", 08/10/2012 - 13/10/2012, San Diego, CA. pp. 1-8.

Descripción

Título: Latest developments in data analysis tools for disruption prediction and for the exploration of multimachine operational spaces.
Autor/es:
  • López Navarro, Juan Manuel
  • Murari, A.
  • Vega, J.
  • Boutot, P.
  • Cannas, B.
  • Dormido-Canto, S.
  • Fanni, A.
  • Moreno, R.
  • Pau, A.
  • Sias, G.
  • Ramírez, J.M.
  • Verdoolaege, G.
Tipo de Documento: Ponencia en Congreso o Jornada (Artículo)
Título del Evento: 24th IAEA Fusion Energy Conference (FEC 2012). San Diego, USA. 8-13 October 2012
Fechas del Evento: 08/10/2012 - 13/10/2012
Lugar del Evento: San Diego, CA
Título del Libro: Proceedings of the 24th IAEA Fusion Energy Conference
Fecha: 2012
Volumen: IAEA-C
Materias:
Escuela: E.U.I.T. Telecomunicación (UPM) [antigua denominación]
Departamento: Sistemas Electrónicos y de Control [hasta 2014]
Licencias Creative Commons: Reconocimiento - Sin obra derivada - No comercial

Texto completo

[img]
Vista Previa
PDF (Document Portable Format) - Se necesita un visor de ficheros PDF, como GSview, Xpdf o Adobe Acrobat Reader
Descargar (767kB) | Vista Previa

Resumen

In the last years significant efforts have been devoted to the development of advanced data analysis tools to both predict the occurrence of disruptions and to investigate the operational spaces of devices, with the long term goal of advancing the understanding of the physics of these events and to prepare for ITER. On JET the latest generation of the disruption predictor called APODIS has been deployed in the real time network during the last campaigns with the new metallic wall. Even if it was trained only with discharges with the carbon wall, it has reached very good performance, with both missed alarms and false alarms in the order of a few percent (and strategies to improve the performance have already been identified). Since for the optimisation of the mitigation measures, predicting also the type of disruption is considered to be also very important, a new clustering method, based on the geodesic distance on a probabilistic manifold, has been developed. This technique allows automatic classification of an incoming disruption with a success rate of better than 85%. Various other manifold learning tools, particularly Principal Component Analysis and Self Organised Maps, are also producing very interesting results in the comparative analysis of JET and ASDEX Upgrade (AUG) operational spaces, on the route to developing predictors capable of extrapolating from one device to another.

Más información

ID de Registro: 20248
Identificador DC: http://oa.upm.es/20248/
Identificador OAI: oai:oa.upm.es:20248
URL Oficial: http://fec2012.com/
Depositado por: Memoria Investigacion
Depositado el: 28 Mar 2014 16:43
Ultima Modificación: 21 Abr 2016 23:00
  • Open Access
  • Open Access
  • Sherpa-Romeo
    Compruebe si la revista anglosajona en la que ha publicado un artículo permite también su publicación en abierto.
  • Dulcinea
    Compruebe si la revista española en la que ha publicado un artículo permite también su publicación en abierto.
  • Recolecta
  • e-ciencia
  • Observatorio I+D+i UPM
  • OpenCourseWare UPM