Using a causal smoothing to improve the performance of an on-line neural network glucose prediction algorithm

Pérez Gandía, Carmen; Garcia Garcia, Fernando; García Sáez, Gema; Rodriguez Herrero, Agustin; Gómez Aguilera, Enrique J.; Rigla Cros, Mercedes y Hernando Pérez, María Elena (2012). Using a causal smoothing to improve the performance of an on-line neural network glucose prediction algorithm. En: "5th Conference on Advanced Technologies & Treatments for Diabetes, Barcelona, Spain, 2012", 08/02/2012 - 11/02/2012, BARCELONA. pp..

Descripción

Título: Using a causal smoothing to improve the performance of an on-line neural network glucose prediction algorithm
Autor/es:
  • Pérez Gandía, Carmen
  • Garcia Garcia, Fernando
  • García Sáez, Gema
  • Rodriguez Herrero, Agustin
  • Gómez Aguilera, Enrique J.
  • Rigla Cros, Mercedes
  • Hernando Pérez, María Elena
Tipo de Documento: Ponencia en Congreso o Jornada (Póster)
Título del Evento: 5th Conference on Advanced Technologies & Treatments for Diabetes, Barcelona, Spain, 2012
Fechas del Evento: 08/02/2012 - 11/02/2012
Lugar del Evento: BARCELONA
Título del Libro: Proceedings 5th Conference on Advanced Technologies & Treatments for Diabetes, Barcelona, Spain, 2012
Fecha: Febrero 2012
Materias:
Escuela: E.T.S.I. Telecomunicación (UPM)
Departamento: Tecnología Fotónica [hasta 2014]
Licencias Creative Commons: Reconocimiento - Sin obra derivada - No comercial

Texto completo

[img]
Vista Previa
PDF (Document Portable Format) - Se necesita un visor de ficheros PDF, como GSview, Xpdf o Adobe Acrobat Reader
Descargar (193kB) | Vista Previa

Resumen

This work evaluates a spline-based smoothing method applied to the output of a glucose predictor. Methods:Our on-line prediction algorithm is based on a neural network model (NNM). We trained/validated the NNM with a prediction horizon of 30 minutes using 39/54 profiles of patients monitored with the Guardian® Real-Time continuous glucose monitoring system The NNM output is smoothed by fitting a causal cubic spline. The assessment parameters are the error (RMSE), mean delay (MD) and the high-frequency noise (HFCrms). The HFCrms is the root-mean-square values of the high-frequency components isolated with a zero-delay non-causal filter. HFCrms is 2.90±1.37 (mg/dl) for the original profiles.

Más información

ID de Registro: 20391
Identificador DC: http://oa.upm.es/20391/
Identificador OAI: oai:oa.upm.es:20391
Depositado por: Memoria Investigacion
Depositado el: 15 Oct 2013 16:37
Ultima Modificación: 21 Abr 2016 23:09
  • Open Access
  • Open Access
  • Sherpa-Romeo
    Compruebe si la revista anglosajona en la que ha publicado un artículo permite también su publicación en abierto.
  • Dulcinea
    Compruebe si la revista española en la que ha publicado un artículo permite también su publicación en abierto.
  • Recolecta
  • e-ciencia
  • Observatorio I+D+i UPM
  • OpenCourseWare UPM