Mars: a personalised mobile activity recognition system

Menasalvas Ruiz, Ernestina; Bártolo Gomes, Joao Paulo; Krishnaswamy, Shonali; Gaber, Mohamed M. y Sousa, Pedro (2012). Mars: a personalised mobile activity recognition system. En: "13th International Conference on Mobile Data Management", 23/07/2012 - 26/07/2012, Bengaluru, Karnataka, India. ISBN 978-0-7695-4713-8. pp. 316-319. https://doi.org/10.1109/MDM.2012.33.

Descripción

Título: Mars: a personalised mobile activity recognition system
Autor/es:
  • Menasalvas Ruiz, Ernestina
  • Bártolo Gomes, Joao Paulo
  • Krishnaswamy, Shonali
  • Gaber, Mohamed M.
  • Sousa, Pedro
Tipo de Documento: Ponencia en Congreso o Jornada (Artículo)
Título del Evento: 13th International Conference on Mobile Data Management
Fechas del Evento: 23/07/2012 - 26/07/2012
Lugar del Evento: Bengaluru, Karnataka, India
Título del Libro: Proceedings of the 2012 IEEE 13th International Conference on Mobile Data Management (mdm 2012)
Fecha: 2012
ISBN: 978-0-7695-4713-8
Materias:
Escuela: Facultad de Informática (UPM) [antigua denominación]
Departamento: Lenguajes y Sistemas Informáticos e Ingeniería del Software
Licencias Creative Commons: Reconocimiento - Sin obra derivada - No comercial

Texto completo

[img]
Vista Previa
PDF (Document Portable Format) - Se necesita un visor de ficheros PDF, como GSview, Xpdf o Adobe Acrobat Reader
Descargar (555kB) | Vista Previa

Resumen

Mobile activity recognition focuses on inferring the current activities of a mobile user by leveraging the sensory data that is available on today’s smart phones. The state of the art in mobile activity recognition uses traditional classification learning techniques. Thus, the learning process typically involves: i) collection of labelled sensory data that is transferred and collated in a centralised repository; ii) model building where the classification model is trained and tested using the collected data; iii) a model deployment stage where the learnt model is deployed on-board a mobile device for identifying activities based on new sensory data. In this paper, we demonstrate the Mobile Activity Recognition System (MARS) where for the first time the model is built and continuously updated on-board the mobile device itself using data stream mining. The advantages of the on-board approach are that it allows model personalisation and increased privacy as the data is not sent to any external site. Furthermore, when the user or its activity profile changes MARS enables promptly adaptation. MARS has been implemented on the Android platform to demonstrate that it can achieve accurate mobile activity recognition. Moreover, we can show in practise that MARS quickly adapts to user profile changes while at the same time being scalable and efficient in terms of consumption of the device resources.

Más información

ID de Registro: 21065
Identificador DC: http://oa.upm.es/21065/
Identificador OAI: oai:oa.upm.es:21065
Identificador DOI: 10.1109/MDM.2012.33
URL Oficial: http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6341409
Depositado por: Memoria Investigacion
Depositado el: 11 Nov 2013 17:51
Ultima Modificación: 21 Abr 2016 11:10
  • Open Access
  • Open Access
  • Sherpa-Romeo
    Compruebe si la revista anglosajona en la que ha publicado un artículo permite también su publicación en abierto.
  • Dulcinea
    Compruebe si la revista española en la que ha publicado un artículo permite también su publicación en abierto.
  • Recolecta
  • e-ciencia
  • Observatorio I+D+i UPM
  • OpenCourseWare UPM