Geometric diagnostics of complex patterns: Spiral defect chaos

Riecke, Hermann y Sánchez Madruga, Santiago (2006). Geometric diagnostics of complex patterns: Spiral defect chaos. "Chaos", v. 16 ; pp.. ISSN 1054-1500. https://doi.org/10.1063/1.2171515.

Descripción

Título: Geometric diagnostics of complex patterns: Spiral defect chaos
Autor/es:
  • Riecke, Hermann
  • Sánchez Madruga, Santiago
Tipo de Documento: Artículo
Título de Revista/Publicación: Chaos
Fecha: 2006
Volumen: 16
Materias:
Escuela: E.T.S.I. Aeronáuticos (UPM) [antigua denominación]
Departamento: Fundamentos Matemáticos de la Tecnología Aeronáutica [hasta 2014]
Licencias Creative Commons: Reconocimiento - Sin obra derivada - No comercial

Texto completo

[img]
Vista Previa
PDF (Document Portable Format) - Se necesita un visor de ficheros PDF, como GSview, Xpdf o Adobe Acrobat Reader
Descargar (1MB) | Vista Previa

Resumen

Motivated by the observation of spiral patterns in a wide range of physical, chemical, and biological systems, we present an automated approach that aims at characterizing quantitatively spiral-like elements in complex stripelike patterns. The approach provides the location of the spiral tip and the size of the spiral arms in terms of their arc length and their winding number. In addition, it yields the number of pattern components (Betti number of order 1), as well as their size and certain aspects of their shape. We apply the method to spiral defect chaos in thermally driven Rayleigh- Bénard convection and find that the arc length of spirals decreases monotonically with decreasing Prandtl number of the fluid and increasing heating. By contrast, the winding number of the spirals is nonmonotonic in the heating. The distribution function for the number of spirals is significantly narrower than a Poisson distribution. The distribution function for the winding number shows approximately an exponential decay. It depends only weakly on the heating, but strongly on the Prandtl number. Large spirals arise only for larger Prandtl numbers. In this regime the joint distribution for the spiral length and the winding number exhibits a three-peak structure, indicating the dominance of Archimedean spirals of opposite sign and relatively straight sections. For small Prandtl numbers the distribution function reveals a large number of small compact pattern components.

Más información

ID de Registro: 21710
Identificador DC: http://oa.upm.es/21710/
Identificador OAI: oai:oa.upm.es:21710
Identificador DOI: 10.1063/1.2171515
URL Oficial: http://chaos.aip.org/chaos/copyright.jsp
Depositado por: Memoria Investigacion
Depositado el: 22 Nov 2013 10:25
Ultima Modificación: 21 Abr 2016 12:26
  • Open Access
  • Open Access
  • Sherpa-Romeo
    Compruebe si la revista anglosajona en la que ha publicado un artículo permite también su publicación en abierto.
  • Dulcinea
    Compruebe si la revista española en la que ha publicado un artículo permite también su publicación en abierto.
  • Recolecta
  • e-ciencia
  • Observatorio I+D+i UPM
  • OpenCourseWare UPM