A methodology to compare dimensionality reduction algorithms in terms of loss of quality

Gracia Berná, Antonio; González Tortosa, Santiago; Robles Forcada, Víctor y Menasalvas Ruiz, Ernestina (2014). A methodology to compare dimensionality reduction algorithms in terms of loss of quality. "Information Sciences", v. 270 ; pp. 1-27. ISSN 0020-0255. https://doi.org/10.1016/j.ins.2014.02.068.

Descripción

Título: A methodology to compare dimensionality reduction algorithms in terms of loss of quality
Autor/es:
  • Gracia Berná, Antonio
  • González Tortosa, Santiago
  • Robles Forcada, Víctor
  • Menasalvas Ruiz, Ernestina
Tipo de Documento: Artículo
Título de Revista/Publicación: Information Sciences
Fecha: Junio 2014
Volumen: 270
Materias:
Palabras Clave Informales: Manifold learning; Nonlinear dimensionality reduction; Linear dimensionality reduction; Loss of quality; Quality assessment criteria
Escuela: Centro de Supercomputación y Visualización de Madrid (CeSViMa) (UPM)
Departamento: Otro
Licencias Creative Commons: Reconocimiento - Sin obra derivada - No comercial

Texto completo

[img]
Vista Previa
PDF (Document Portable Format) - Se necesita un visor de ficheros PDF, como GSview, Xpdf o Adobe Acrobat Reader
Descargar (12MB) | Vista Previa

Resumen

Dimensionality Reduction (DR) is attracting more attention these days as a result of the increasing need to handle huge amounts of data effectively. DR methods allow the number of initial features to be reduced considerably until a set of them is found that allows the original properties of the data to be kept. However, their use entails an inherent loss of quality that is likely to affect the understanding of the data, in terms of data analysis. This loss of quality could be determinant when selecting a DR method, because of the nature of each method. In this paper, we propose a methodology that allows different DR methods to be analyzed and compared as regards the loss of quality produced by them. This methodology makes use of the concept of preservation of geometry (quality assessment criteria) to assess the loss of quality. Experiments have been carried out by using the most well-known DR algorithms and quality assessment criteria, based on the literature. These experiments have been applied on 12 real-world datasets. Results obtained so far show that it is possible to establish a method to select the most appropriate DR method, in terms of minimum loss of quality. Experiments have also highlighted some interesting relationships between the quality assessment criteria. Finally, the methodology allows the appropriate choice of dimensionality for reducing data to be established, whilst giving rise to a minimum loss of quality.

Más información

ID de Registro: 25892
Identificador DC: http://oa.upm.es/25892/
Identificador OAI: oai:oa.upm.es:25892
Identificador DOI: 10.1016/j.ins.2014.02.068
URL Oficial: http://www.sciencedirect.com/science/article/pii/S0020025514001741
Depositado por: Memoria Investigacion
Depositado el: 12 Abr 2015 12:19
Ultima Modificación: 01 Jul 2016 22:30
  • Open Access
  • Open Access
  • Sherpa-Romeo
    Compruebe si la revista anglosajona en la que ha publicado un artículo permite también su publicación en abierto.
  • Dulcinea
    Compruebe si la revista española en la que ha publicado un artículo permite también su publicación en abierto.
  • Recolecta
  • e-ciencia
  • Observatorio I+D+i UPM
  • OpenCourseWare UPM