Neuroanatomic-based detection algorithm for automatic labeling of brain structures in brain injury

Luna Serrano, Marta; Gayá Moreno, Francisco Javier; García Molina, A.; González Rivas, Luis Miguel; Cáceres Taladriz, César; Bernabeu Guitart, M.; Roig Rovira, Teresa; Pascual Leone, Álvaro; Tormos Muñoz, Josep M. y Gómez Aguilera, Enrique J. (2014). Neuroanatomic-based detection algorithm for automatic labeling of brain structures in brain injury. En: "XIII Mediterranean Conference on Medical and Biological Engineering and Computing (MEDICON 2013)", 25/09/2013 - 28/09/2013, Sevilla, Spain. pp. 1694-1697. https://doi.org/10.1007/978-3-319-00846-2_418.

Descripción

Título: Neuroanatomic-based detection algorithm for automatic labeling of brain structures in brain injury
Autor/es:
  • Luna Serrano, Marta
  • Gayá Moreno, Francisco Javier
  • García Molina, A.
  • González Rivas, Luis Miguel
  • Cáceres Taladriz, César
  • Bernabeu Guitart, M.
  • Roig Rovira, Teresa
  • Pascual Leone, Álvaro
  • Tormos Muñoz, Josep M.
  • Gómez Aguilera, Enrique J.
Tipo de Documento: Ponencia en Congreso o Jornada (Artículo)
Título del Evento: XIII Mediterranean Conference on Medical and Biological Engineering and Computing (MEDICON 2013)
Fechas del Evento: 25/09/2013 - 28/09/2013
Lugar del Evento: Sevilla, Spain
Título del Libro: IFMBE Proceedings
Fecha: 2014
Volumen: 41
Materias:
Palabras Clave Informales: Neuroimaging, Descriptors, Landmarks, Magnetic Resonance Imaging (MRI), Neuroanatomic Structures
Escuela: E.T.S.I. Telecomunicación (UPM)
Departamento: Tecnología Fotónica [hasta 2014]
Licencias Creative Commons: Reconocimiento - Sin obra derivada - No comercial

Texto completo

[img]
Vista Previa
PDF (Document Portable Format) - Se necesita un visor de ficheros PDF, como GSview, Xpdf o Adobe Acrobat Reader
Descargar (223kB)

Resumen

The number and grade of injured neuroanatomic structures and the type of injury determine the degree of impairment after a brain injury event and the recovery options of the patient. However, the body of knowledge and clinical intervention guides are basically focused on functional disorder and they still do not take into account the location of injuries. The prognostic value of location information is not known in detail either. This paper proposes a feature-based detection algorithm, named Neuroanatomic-Based Detection Algorithm (NBDA), based on SURF (Speeded Up Robust Feature) to label anatomical brain structures on cortical and sub-cortical areas. Themain goal is to register injured neuroanatomic structures to generate a database containing patient?s structural impairment profile. This kind of information permits to establish a relation with functional disorders and the prognostic evolution during neurorehabilitation procedures.

Más información

ID de Registro: 26117
Identificador DC: http://oa.upm.es/26117/
Identificador OAI: oai:oa.upm.es:26117
Identificador DOI: 10.1007/978-3-319-00846-2_418
Depositado por: Memoria Investigacion
Depositado el: 27 May 2014 18:37
Ultima Modificación: 01 Feb 2015 23:56
  • GEO_UP4
  • Open Access
  • Open Access
  • Sherpa-Romeo
    Compruebe si la revista anglosajona en la que ha publicado un artículo permite también su publicación en abierto.
  • Dulcinea
    Compruebe si la revista española en la que ha publicado un artículo permite también su publicación en abierto.
  • Recolecta
  • InvestigaM
  • Observatorio I+D+i UPM
  • OpenCourseWare UPM