Probabilistic reasoning with an enzyme-driven DNA device

Sainz de Murieta Fuentes, Iñaki y Rodríguez-Patón Aradas, Alfonso (2013). Probabilistic reasoning with an enzyme-driven DNA device. En: "DNA 19", 22-27 Sep 2013, Tempe, Arizona, Estados Unidos. ISBN 978-3-319-01927-7. pp. 160-173.

Descripción

Título: Probabilistic reasoning with an enzyme-driven DNA device
Autor/es:
  • Sainz de Murieta Fuentes, Iñaki
  • Rodríguez-Patón Aradas, Alfonso
Tipo de Documento: Ponencia en Congreso o Jornada (Artículo)
Título del Evento: DNA 19
Fechas del Evento: 22-27 Sep 2013
Lugar del Evento: Tempe, Arizona, Estados Unidos
Título del Libro: Probabilistic Reasoning with an Enzyme-Driven DNA Device
Fecha: 2013
ISBN: 978-3-319-01927-7
Volumen: 8141
Materias:
Escuela: Facultad de Informática (UPM) [antigua denominación]
Departamento: Inteligencia Artificial
Licencias Creative Commons: Reconocimiento - Sin obra derivada - No comercial

Texto completo

[img]
Vista Previa
PDF (Document Portable Format) - Se necesita un visor de ficheros PDF, como GSview, Xpdf o Adobe Acrobat Reader
Descargar (796kB) | Vista Previa

Resumen

We present a biomolecular probabilistic model driven by the action of a DNA toolbox made of a set of DNA templates and enzymes that is able to perform Bayesian inference. The model will take single-stranded DNA as input data, representing the presence or absence of a specific molecular signal (the evidence). The program logic uses different DNA templates and their relative concentration ratios to encode the prior probability of a disease and the conditional probability of a signal given the disease. When the input and program molecules interact, an enzyme-driven cascade of reactions (DNA polymerase extension, nicking and degradation) is triggered, producing a different pair of single-stranded DNA species. Once the system reaches equilibrium, the ratio between the output species will represent the application of Bayes? law: the conditional probability of the disease given the signal. In other words, a qualitative diagnosis plus a quantitative degree of belief in that diagno- sis. Thanks to the inherent amplification capability of this DNA toolbox, the resulting system will be able to to scale up (with longer cascades and thus more input signals) a Bayesian biosensor that we designed previously.

Más información

ID de Registro: 26732
Identificador DC: http://oa.upm.es/26732/
Identificador OAI: oai:oa.upm.es:26732
URL Oficial: http://link.springer.com/book/10.1007/978-3-319-01928-4
Depositado por: Memoria Investigacion
Depositado el: 17 Jun 2014 07:31
Ultima Modificación: 30 Nov 2017 08:53
  • Open Access
  • Open Access
  • Sherpa-Romeo
    Compruebe si la revista anglosajona en la que ha publicado un artículo permite también su publicación en abierto.
  • Dulcinea
    Compruebe si la revista española en la que ha publicado un artículo permite también su publicación en abierto.
  • Recolecta
  • e-ciencia
  • Observatorio I+D+i UPM
  • OpenCourseWare UPM