Synchronous parallel kinetic Monte Carlo for continuum diffusion-reaction systems

Martínez Sáez, Enrique; Marian, Jaime; Kalos, Malvin y Perlado Martín, José Manuel (2008). Synchronous parallel kinetic Monte Carlo for continuum diffusion-reaction systems. "Journal of Computational Physics", v. 227 (n. 8); pp. 3804-3823. ISSN 0021-9991. https://doi.org/10.1016/j.jcp.2007.11.045.

Descripción

Título: Synchronous parallel kinetic Monte Carlo for continuum diffusion-reaction systems
Autor/es:
  • Martínez Sáez, Enrique
  • Marian, Jaime
  • Kalos, Malvin
  • Perlado Martín, José Manuel
Tipo de Documento: Artículo
Título de Revista/Publicación: Journal of Computational Physics
Fecha: Abril 2008
Volumen: 227
Materias:
Palabras Clave Informales: Kinetic Monte Carlo; parallel computing; diffusion; scalability
Escuela: E.T.S.I. Industriales (UPM)
Departamento: Ingeniería Nuclear [hasta 2014]
Licencias Creative Commons: Reconocimiento - Sin obra derivada - No comercial

Texto completo

[img]
Vista Previa
PDF (Document Portable Format) - Se necesita un visor de ficheros PDF, como GSview, Xpdf o Adobe Acrobat Reader
Descargar (1MB) | Vista Previa

Resumen

A novel parallel kinetic Monte Carlo (kMC) algorithm formulated on the basis of perfect time synchronicity is presented. The algorithm is intended as a generalization of the standard n-fold kMC method, and is trivially implemented in parallel architectures. In its present form, the algorithm is not rigorous in the sense that boundary conflicts are ignored. We demonstrate, however, that, in their absence, or if they were correctly accounted for, our algorithm solves the same master equation as the serial method. We test the validity and parallel performance of the method by solving several pure diffusion problems (i.e. with no particle interactions) with known analytical solution. We also study diffusion-reaction systems with known asymptotic behavior and find that, for large systems with interaction radii smaller than the typical diffusion length, boundary conflicts are negligible and do not affect the global kinetic evolution, which is seen to agree with the expected analytical behavior. Our method is a controlled approximation in the sense that the error incurred by ignoring boundary conflicts can be quantified intrinsically, during the course of a simulation, and decreased arbitrarily (controlled) by modifying a few problem-dependent simulation parameters.

Más información

ID de Registro: 2688
Identificador DC: http://oa.upm.es/2688/
Identificador OAI: oai:oa.upm.es:2688
Identificador DOI: 10.1016/j.jcp.2007.11.045
URL Oficial: http://www.elsevier.com/wps/find/journaldescription.cws_home/622866/description#description
Depositado por: Memoria Investigacion
Depositado el: 24 Mar 2010 11:45
Ultima Modificación: 06 Sep 2017 16:45
  • Open Access
  • Open Access
  • Sherpa-Romeo
    Compruebe si la revista anglosajona en la que ha publicado un artículo permite también su publicación en abierto.
  • Dulcinea
    Compruebe si la revista española en la que ha publicado un artículo permite también su publicación en abierto.
  • Recolecta
  • e-ciencia
  • Observatorio I+D+i UPM
  • OpenCourseWare UPM