Nonparametric generalized belief propagation based on pseudo-junction tree for cooperative localization in wireless networks

Savic, Vladimir y Zazo Bello, Santiago (2013). Nonparametric generalized belief propagation based on pseudo-junction tree for cooperative localization in wireless networks. "Eurasip Journal on Advances in Signal Processing", v. 2013 (n. 16); pp. 1-15. ISSN 1687-6180. https://doi.org/10.1186/1687-6180-2013-16.

Descripción

Título: Nonparametric generalized belief propagation based on pseudo-junction tree for cooperative localization in wireless networks
Autor/es:
  • Savic, Vladimir
  • Zazo Bello, Santiago
Tipo de Documento: Artículo
Título de Revista/Publicación: Eurasip Journal on Advances in Signal Processing
Fecha: 2013
Volumen: 2013
Materias:
Escuela: E.T.S.I. Telecomunicación (UPM)
Departamento: Señales, Sistemas y Radiocomunicaciones
Licencias Creative Commons: Reconocimiento - Sin obra derivada - No comercial

Texto completo

[img]
Vista Previa
PDF (Document Portable Format) - Se necesita un visor de ficheros PDF, como GSview, Xpdf o Adobe Acrobat Reader
Descargar (922kB)

Resumen

Non-parametric belief propagation (NBP) is a well-known message passing method for cooperative localization in wireless networks. However, due to the over-counting problem in the networks with loops, NBP’s convergence is not guaranteed, and its estimates are typically less accurate. One solution for this problem is non-parametric generalized belief propagation based on junction tree. However, this method is intractable in large-scale networks due to the high-complexity of the junction tree formation, and the high-dimensionality of the particles. Therefore, in this article, we propose the non-parametric generalized belief propagation based on pseudo-junction tree (NGBP-PJT). The main difference comparing with the standard method is the formation of pseudo-junction tree, which represents the approximated junction tree based on thin graph. In addition, in order to decrease the number of high-dimensional particles, we use more informative importance density function, and reduce the dimensionality of the messages. As by-product, we also propose NBP based on thin graph (NBP-TG), a cheaper variant of NBP, which runs on the same graph as NGBP-PJT. According to our simulation and experimental results, NGBP-PJT method outperforms NBP and NBP-TG in terms of accuracy, computational, and communication cost in reasonably sized networks.

Más información

ID de Registro: 28868
Identificador DC: http://oa.upm.es/28868/
Identificador OAI: oai:oa.upm.es:28868
Identificador DOI: 10.1186/1687-6180-2013-16
URL Oficial: http://asp.eurasipjournals.com/content/2013/1/16
Depositado por: Memoria Investigacion
Depositado el: 07 Jun 2014 12:46
Ultima Modificación: 22 Sep 2014 11:43
  • Open Access
  • Open Access
  • Sherpa-Romeo
    Compruebe si la revista anglosajona en la que ha publicado un artículo permite también su publicación en abierto.
  • Dulcinea
    Compruebe si la revista española en la que ha publicado un artículo permite también su publicación en abierto.
  • Recolecta
  • e-ciencia
  • Observatorio I+D+i UPM
  • OpenCourseWare UPM