Molecular dynamics modeling and simulation of void growth in two dimensions

Chang, Hyung-jun; Segurado Escudero, Javier; Rodríguez de la Fuente, O.; Pabón, B. M. y Llorca Martinez, Francisco Javier (2013). Molecular dynamics modeling and simulation of void growth in two dimensions. "Modelling and simulation in materials science and engineering", v. 21 (n. 7); pp. 1-17. ISSN 0965-0393. https://doi.org/10.1088/0965-0393/21/7/075010.

Descripción

Título: Molecular dynamics modeling and simulation of void growth in two dimensions
Autor/es:
  • Chang, Hyung-jun
  • Segurado Escudero, Javier
  • Rodríguez de la Fuente, O.
  • Pabón, B. M.
  • Llorca Martinez, Francisco Javier
Tipo de Documento: Artículo
Título de Revista/Publicación: Modelling and simulation in materials science and engineering
Fecha: Septiembre 2013
Volumen: 21
Materias:
Escuela: E.T.S.I. Caminos, Canales y Puertos (UPM)
Departamento: Ciencia de los Materiales
Licencias Creative Commons: Reconocimiento - Sin obra derivada - No comercial

Texto completo

[img]
Vista Previa
PDF (Document Portable Format) - Se necesita un visor de ficheros PDF, como GSview, Xpdf o Adobe Acrobat Reader
Descargar (9MB)

Resumen

The mechanisms of growth of a circular void by plastic deformation were studied by means of molecular dynamics in two dimensions (2D). While previous molecular dynamics (MD) simulations in three dimensions (3D) have been limited to small voids (up to ≈10 nm in radius), this strategy allows us to study the behavior of voids of up to 100 nm in radius. MD simulations showed that plastic deformation was triggered by the nucleation of dislocations at the atomic steps of the void surface in the whole range of void sizes studied. The yield stress, defined as stress necessary to nucleate stable dislocations, decreased with temperature, but the void growth rate was not very sensitive to this parameter. Simulations under uniaxial tension, uniaxial deformation and biaxial deformation showed that the void growth rate increased very rapidly with multiaxiality but it did not depend on the initial void radius. These results were compared with previous 3D MD and 2D dislocation dynamics simulations to establish a map of mechanisms and size effects for plastic void growth in crystalline solids.

Más información

ID de Registro: 29087
Identificador DC: http://oa.upm.es/29087/
Identificador OAI: oai:oa.upm.es:29087
Identificador DOI: 10.1088/0965-0393/21/7/075010
URL Oficial: http://iopscience.iop.org/0965-0393/21/7/075010
Depositado por: Memoria Investigacion
Depositado el: 05 Jun 2014 11:30
Ultima Modificación: 22 Sep 2014 11:44
  • Open Access
  • Open Access
  • Sherpa-Romeo
    Compruebe si la revista anglosajona en la que ha publicado un artículo permite también su publicación en abierto.
  • Dulcinea
    Compruebe si la revista española en la que ha publicado un artículo permite también su publicación en abierto.
  • Recolecta
  • e-ciencia
  • Observatorio I+D+i UPM
  • OpenCourseWare UPM