Modelización de reacciones químicas en presencia de un campo electromagnético variable

Hernández Mendiola, Henar (2014). Modelización de reacciones químicas en presencia de un campo electromagnético variable. Tesis (Doctoral), E.T.S.I. Agrónomos (UPM) [antigua denominación].

Descripción

Título: Modelización de reacciones químicas en presencia de un campo electromagnético variable
Autor/es:
  • Hernández Mendiola, Henar
Director/es:
  • Losada González, Juan Carlos
  • Borondo Rodríguez, Florentino
Tipo de Documento: Tesis (Doctoral)
Fecha: 2014
Materias:
Escuela: E.T.S.I. Agrónomos (UPM) [antigua denominación]
Departamento: Física y Mecánica Fundamental, Aplicada a la Ingeniería Agroforestal [hasta 2014]
Licencias Creative Commons: Reconocimiento - Sin obra derivada - No comercial

Texto completo

[img]
Vista Previa
PDF (Document Portable Format) - Se necesita un visor de ficheros PDF, como GSview, Xpdf o Adobe Acrobat Reader
Descargar (28MB)

Resumen

En esta tesis se aborda el estudio del proceso de isomerización del sistema molecular LiNC/LiCN tanto aislado como en presencia de un pulso láser aplicando la teoría del estado de transición (TST). Esta teoría tiene como pilar fundamental el hecho de que el conocimiento de la dinámica en las proximidades de un punto de silla de la superficie de energía potencial permite determinar los parámetros cinéticos de la reacción objeto de estudio. Históricamente, existen dos formulaciones de la teoría del estado de transición, la versión termodinámica de Eyring (Eyr38) y la visión dinámica de Wigner (Wig38). Ésta última ha sufrido recientemente un amplio desarrollo, paralelo a los avances en sistemas dinámicos que ha dado lugar a una formulación geométrica en el espacio de fases que sirve como base al trabajo desarrollado en esta tesis. Nos hemos centrado en abordar el problema desde una visión fundamentalmente práctica, ya que la teoría del estado de transición presenta una desventaja: su elevado coste computacional y de tiempo de cálculo. Dos han sido los principales objetivos de este trabajo. El primero de ellos ha sido sentar las bases teóricas y computacionales de un algoritmo eficiente que permita obtener las magnitudes fundamentales de la TST. Así, hemos adaptado con éxito un algoritmo computacional desarrollado en el ámbito de la mecánica celeste (Jor99), obteniendo un método rápido y eficiente para la obtención de los objetos geométricos que rigen la dinámica en el espacio de fases y que ha permitido calcular magnitudes cinéticas tales como el flujo reactivo, la densidad de estados de reactivos y productos y en última instancia la constante de velocidad. Dichos cálculos han sido comparados con resultados estadísticos (presentados en (Mül07)) lo cual nos ha permitido demostrar la eficacia del método empleado. El segundo objetivo de esta tesis, ha sido la evaluación de la influencia de los parámetros de un pulso electromagnético sobre la dinámica de reacción. Para ello se ha generalizado la metodología de obtención de la forma normal del hamiltoniano cuando el sistema químico es alterado mediante una perturbación temporal periódica. En este caso el punto fijo inestable en cuya vecindad se calculan los objetos geométricos de interés para la aplicación de la TST, se transforma en una órbita periódica del mismo periodo que la perturbación. Esto ha permitido la simulación de la reactividad en presencia de un pulso láser. Conocer el efecto de esta perturbación posibilita el control de la reactividad química. Además de obtener los objetos geométricos que rigen la dinámica en una cierta vecindad de la órbita periódica y que son la clave de la TST, se ha estudiado el efecto de los parámetros del pulso sobre la reactividad en el espacio de fases global así como sobre el flujo reactivo que atraviesa la superficie divisoria que separa reactivos de productos. Así, se ha puesto de manifiesto, que la amplitud del pulso es el parámetro más influyente sobre la reactividad química, pudiendo producir la aparición de flujos reactivos a energías inferiores a las de aparición del sistema aislado y el aumento del flujo reactivo a valores constantes de energía inicial. ABSTRACT We have studied the isomerization reaction LiNC/LiCN isolated and perturbed by a laser pulse. Transition State theory (TST) is the main tool we have used. The basis of this theory is knowing the dynamics close to a fixed point of the potential energy surface. It is possible to calculate kinetic magnitudes by knowing the dynamics in a neighbourhood of the fixed point. TST was first formulated in the 30's and there were 2 points of view, one thermodynamical by Eyring (Eyr38) and another dynamical one by Wigner (Wig38). The latter one has grown lately due to the growth of the dynamical systems leading to a geometrical view of the TST. This is the basis of the work shown in this thesis. As the TST has one main handicap: the high computational cost, one of the main goals of this work is to find an efficient method. We have adapted a methodology developed in the field of celestial mechanics (Jor99). The result: an efficient, fast and accurate algorithm that allows us to obtain the geometric objects that lead the dynamics close to the fixed point. Flux across the dividing surface, density of states and reaction rate coefficient have been calculated and compared with previous statistical results, (Mül07), leading to the conclusion that the method is accurate and good enough. We have widen the methodology to include a time dependent perturbation. If the perturbation is periodic in time, the fixed point becomes a periodic orbit whose period is the same as the period of the perturbation. This way we have been able to simulate the isomerization reaction when the system has been perturbed by a laser pulse. By knowing the effect of that perturbation we will be able to control the chemical reactivity. We have also studied the effect of the parameters on the global phase space dynamics and on the flux across the dividing surface. It has been prove that amplitude is the most influent parameter on the reaction dynamics. Increasing amplitude leads to greater fluxes and to some flux at energies it would not if the systems would not have been perturbed.

Más información

ID de Registro: 29170
Identificador DC: http://oa.upm.es/29170/
Identificador OAI: oai:oa.upm.es:29170
Depositado por: Archivo Digital UPM 2
Depositado el: 06 Jun 2014 08:39
Ultima Modificación: 05 Dic 2014 23:56
  • Open Access
  • Open Access
  • Sherpa-Romeo
    Compruebe si la revista anglosajona en la que ha publicado un artículo permite también su publicación en abierto.
  • Dulcinea
    Compruebe si la revista española en la que ha publicado un artículo permite también su publicación en abierto.
  • Recolecta
  • e-ciencia
  • Observatorio I+D+i UPM
  • OpenCourseWare UPM