Contribución al estudio de las negaciones, autocontradicción, t-normas y t-conormas en los conjuntos borrosos de tipo 2

Hernández Varela, Pablo Ramón (2014). Contribución al estudio de las negaciones, autocontradicción, t-normas y t-conormas en los conjuntos borrosos de tipo 2. Tesis (Doctoral), Facultad de Informática (UPM) [antigua denominación].

Descripción

Título: Contribución al estudio de las negaciones, autocontradicción, t-normas y t-conormas en los conjuntos borrosos de tipo 2
Autor/es:
  • Hernández Varela, Pablo Ramón
Director/es:
  • Cubillo Villanueva, Susana
  • Torres Blanc, Carmen
Tipo de Documento: Tesis (Doctoral)
Fecha: 2014
Materias:
Escuela: Facultad de Informática (UPM) [antigua denominación]
Departamento: Matemática Aplicada
Licencias Creative Commons: Reconocimiento - Sin obra derivada - No comercial

Texto completo

[img]
Vista Previa
PDF (Document Portable Format) - Se necesita un visor de ficheros PDF, como GSview, Xpdf o Adobe Acrobat Reader
Descargar (3MB) | Vista Previa

Resumen

Los conjuntos borrosos de tipo 2 (T2FSs) fueron introducidos por L.A. Zadeh en 1975 [65], como una extensión de los conjuntos borrosos de tipo 1 (FSs). Mientras que en estos últimos el grado de pertenencia de un elemento al conjunto viene determinado por un valor en el intervalo [0, 1], en el caso de los T2FSs el grado de pertenencia de un elemento es un conjunto borroso en [0,1], es decir, un T2FS queda determinado por una función de pertenencia μ : X → M, donde M = [0, 1][0,1] = Map([0, 1], [0, 1]), es el conjunto de las funciones de [0,1] en [0,1] (ver [39], [42], [43], [61]). Desde que los T2FSs fueron introducidos, se han generalizado a dicho conjunto (ver [39], [42], [43], [61], por ejemplo), a partir del “Principio de Extensión” de Zadeh [65] (ver Teorema 1.1), muchas de las definiciones, operaciones, propiedades y resultados obtenidos en los FSs. Sin embargo, como sucede en cualquier área de investigación, quedan muchas lagunas y problemas abiertos que suponen un reto para cualquiera que quiera hacer un estudio profundo en este campo. A este reto se ha dedicado el presente trabajo, logrando avances importantes en este sentido de “rellenar huecos” existentes en la teoría de los conjuntos borrosos de tipo 2, especialmente en las propiedades de autocontradicción y N-autocontradicción, y en las operaciones de negación, t-norma y t-conorma sobre los T2FSs. Cabe destacar que en [61] se justifica que las operaciones sobre los T2FSs (Map(X,M)) se pueden definir de forma natural a partir de las operaciones sobre M, verificando las mismas propiedades. Por tanto, por ser más fácil, en el presente trabajo se toma como objeto de estudio a M, y algunos de sus subconjuntos, en vez de Map(X,M). En cuanto a la operación de negación, en el marco de los conjuntos borrosos de tipo 2 (T2FSs), usualmente se emplea para representar la negación en M, una operación asociada a la negación estándar en [0,1]. Sin embargo, dicha operación no verifica los axiomas que, intuitivamente, debe verificar cualquier operación para ser considerada negación en el conjunto M. En este trabajo se presentan los axiomas de negación y negación fuerte en los T2FSs. También se define una operación asociada a cualquier negación suprayectiva en [0,1], incluyendo la negación estándar, y se estudia, junto con otras propiedades, si es negación y negación fuerte en L (conjunto de las funciones de M normales y convexas). Además, se comprueba en qué condiciones se cumplen las leyes de De Morgan para un extenso conjunto de pares de operaciones binarias en M. Por otra parte, las propiedades de N-autocontradicción y autocontradicción, han sido suficientemente estudiadas en los conjuntos borrosos de tipo 1 (FSs) y en los conjuntos borrosos intuicionistas de Atanassov (AIFSs). En el presente trabajo se inicia el estudio de las mencionadas propiedades, dentro del marco de los T2FSs cuyos grados de pertenencia están en L. En este sentido, aquí se extienden los conceptos de N-autocontradicción y autocontradicción al conjunto L, y se determinan algunos criterios para verificar tales propiedades. En cuanto a otras operaciones, Walker et al. ([61], [63]) definieron dos familias de operaciones binarias sobre M, y determinaron que, bajo ciertas condiciones, estas operaciones son t-normas (normas triangulares) o t-conormas sobre L. En este trabajo se introducen operaciones binarias sobre M, unas más generales y otras diferentes a las dadas por Walker et al., y se estudian varias propiedades de las mismas, con el objeto de deducir nuevas t-normas y t-conormas sobre L. ABSTRACT Type-2 fuzzy sets (T2FSs) were introduced by L.A. Zadeh in 1975 [65] as an extension of type-1 fuzzy sets (FSs). Whereas for FSs the degree of membership of an element of a set is determined by a value in the interval [0, 1] , the degree of membership of an element for T2FSs is a fuzzy set in [0,1], that is, a T2FS is determined by a membership function μ : X → M, where M = [0, 1][0,1] is the set of functions from [0,1] to [0,1] (see [39], [42], [43], [61]). Later, many definitions, operations, properties and results known on FSs, have been generalized to T2FSs (e.g. see [39], [42], [43], [61]) by employing Zadeh’s Extension Principle [65] (see Theorem 1.1). However, as in any area of research, there are still many open problems which represent a challenge for anyone who wants to make a deep study in this field. Then, we have been dedicated to such challenge, making significant progress in this direction to “fill gaps” (close open problems) in the theory of T2FSs, especially on the properties of self-contradiction and N-self-contradiction, and on the operations of negations, t-norms (triangular norms) and t-conorms on T2FSs. Walker and Walker justify in [61] that the operations on Map(X,M) can be defined naturally from the operations onMand have the same properties. Therefore, we will work onM(study subject), and some subsets of M, as all the results are easily and directly extensible to Map(X,M). About the operation of negation, usually has been employed in the framework of T2FSs, a operation associated to standard negation on [0,1], but such operation does not satisfy the negation axioms on M. In this work, we introduce the axioms that a function inMshould satisfy to qualify as a type-2 negation and strong type-2 negation. Also, we define a operation on M associated to any suprajective negation on [0,1], and analyse, among others properties, if such operation is negation or strong negation on L (all normal and convex functions of M). Besides, we study the De Morgan’s laws, with respect to some binary operations on M. On the other hand, The properties of self-contradiction and N-self-contradiction have been extensively studied on FSs and on the Atanassov’s intuitionistic fuzzy sets (AIFSs). Thereon, in this research we begin the study of the mentioned properties on the framework of T2FSs. In this sense, we give the definitions about self-contradiction and N-self-contradiction on L, and establish the criteria to verify these properties on L. Respect to the t-norms and t-conorms, Walker et al. ([61], [63]) defined two families of binary operations on M and found that, under some conditions, these operations are t-norms or t-conorms on L. In this work we introduce more general binary operations on M than those given by Walker et al. and study which are the minimum conditions necessary for these operations satisfy each of the axioms of the t-norm and t-conorm.

Más información

ID de Registro: 30861
Identificador DC: http://oa.upm.es/30861/
Identificador OAI: oai:oa.upm.es:30861
Depositado por: Archivo Digital UPM 2
Depositado el: 11 Sep 2014 08:32
Ultima Modificación: 10 Mar 2015 23:56
  • Open Access
  • Open Access
  • Sherpa-Romeo
    Compruebe si la revista anglosajona en la que ha publicado un artículo permite también su publicación en abierto.
  • Dulcinea
    Compruebe si la revista española en la que ha publicado un artículo permite también su publicación en abierto.
  • Recolecta
  • e-ciencia
  • Observatorio I+D+i UPM
  • OpenCourseWare UPM