A new set of integrals of motion to propagate the perturbed two-body problem

Bau, Giulio; Bombardelli, Claudio y Peláez Álvarez, Jesús (2013). A new set of integrals of motion to propagate the perturbed two-body problem. "Celestial Mechanics And Dynamical Astronomy", v. 116 (n. 1); pp. 53-78. ISSN 0923-2958.

Descripción

Título: A new set of integrals of motion to propagate the perturbed two-body problem
Autor/es:
  • Bau, Giulio
  • Bombardelli, Claudio
  • Peláez Álvarez, Jesús
Tipo de Documento: Artículo
Título de Revista/Publicación: Celestial Mechanics And Dynamical Astronomy
Fecha: 2013
Volumen: 116
Materias:
Palabras Clave Informales: Perturbed two-body problem, Regularization, Generalized orbital elements, Orbit propagation, Linearization
Escuela: E.T.S.I. Aeronáuticos (UPM) [antigua denominación]
Departamento: Aeronaves y Vehículos Espaciales
Licencias Creative Commons: Reconocimiento - Sin obra derivada - No comercial

Texto completo

[img]
Vista Previa
Pdf - Se necesita un visor de ficheros PDF, como GSview, Xpdf o Adobe Acrobat Reader
Descargar (1MB) | Vista Previa

Localizaciones alternativas

URL Oficial: http://link.springer.com/article/10.1007/s10569-013-9475-x

Resumen

A formulation of the perturbed two-body problem that relies on a new set of orbital elements is presented. The proposed method represents a generalization of the special perturbation method published by Peláez et al. (Celest Mech Dyn Astron 97(2):131?150,2007) for the case of a perturbing force that is partially or totally derivable from a potential. We accomplish this result by employing a generalized Sundman time transformation in the framework of the projective decomposition, which is a known approach for transforming the two-body problem into a set of linear and regular differential equations of motion. Numerical tests, carried out with examples extensively used in the literature, show the remarkable improvement of the performance of the new method for different kinds of perturbations and eccentricities. In particular, one notable result is that the quadratic dependence of the position error on the time-like argument exhibited by Peláez?s method for near-circular motion under the J2 perturbation is transformed into linear.Moreover, themethod reveals to be competitive with two very popular elementmethods derived from theKustaanheimo-Stiefel and Sperling-Burdet regularizations.

Más información

ID de Registro: 33437
Identificador DC: http://oa.upm.es/33437/
Identificador OAI: oai:oa.upm.es:33437
Depositado por: Memoria Investigacion
Depositado el: 19 Ene 2015 18:49
Ultima Modificación: 19 Ene 2015 18:49
  • Open Access
  • Open Access
  • Sherpa-Romeo
    Compruebe si la revista anglosajona en la que ha publicado un artículo permite también su publicación en abierto.
  • Dulcinea
    Compruebe si la revista española en la que ha publicado un artículo permite también su publicación en abierto.
  • Recolecta
  • e-ciencia
  • Observatorio I+D+i UPM
  • OpenCourseWare UPM