Transformación del espacio cinemático Laban para la evaluación del movimiento

Diz Miguel, María Ilenia (2014). Transformación del espacio cinemático Laban para la evaluación del movimiento. Proyecto Fin de Carrera / Trabajo Fin de Grado, E.T.S.I. y Sistemas de Telecomunicación (UPM), Madrid.

Description

Title: Transformación del espacio cinemático Laban para la evaluación del movimiento
Author/s:
  • Diz Miguel, María Ilenia
Contributor/s:
  • Garcia Morales, Lino
Item Type: Final Project
Date: 18 September 2014
Subjects:
Faculty: E.T.S.I. y Sistemas de Telecomunicación (UPM)
Department: Ingeniería Audiovisual y Comunicaciones [hasta 2014]
Creative Commons Licenses: Recognition - No derivative works - Non commercial

Full text

[img]
Preview
PDF - Requires a PDF viewer, such as GSview, Xpdf or Adobe Acrobat Reader
Download (3MB) | Preview
[img] Archive (ZIP) - Users in campus UPM only
Download (517kB)

Abstract

Este proyecto tiene como objetivo la implementación de un sistema capaz de analizar el movimiento corporal a partir de unos puntos cinemáticos. Estos puntos cinemáticos se obtienen con un programa previo y se captan con la cámara kinect. Para ello el primer paso es realizar un estudio sobre las técnicas y conocimientos existentes relacionados con el movimiento de las personas. Se sabe que Rudolph Laban fue uno de sus mayores exponentes y gracias a sus observaciones se establece una relación entre la personalidad, el estado anímico y la forma de moverse de un individuo. Laban acuñó el término esfuerzo, que hace referencia al modo en que se administra la energía que genera el movimiento y de qué manera se modula en las secuencias, es una manera de describir la intención de las expresiones internas. El esfuerzo se divide en 4 categorías: peso, espacio, tiempo y flujo, y cada una de estas categorías tiene una polaridad denominada elemento de esfuerzo. Con estos 8 elementos de esfuerzo un movimiento queda caracterizado. Para poder cuantificar los citados elementos de esfuerzo se buscan movimientos que representen a alguno de ellos. Los movimientos se graban con la cámara kinect y se guardan sus valores en un archivo csv. Para el procesado de estos datos se establece que el sistema más adecuado es una red neuronal debido a su flexibilidad y capacidad a la hora de procesar entradas no lineales. Para la implementación de la misma se requiere un amplio estudio que incluye: topologías, funciones de activación, tipos de aprendizaje, algoritmos de entrenamiento entre otros. Se decide que la red tenga dos capas ocultas, para mejor procesado de los datos, que sea estática, siga un proceso de cálculo hacia delante (Feedforward) y el algoritmo por el que se rija su aprendizaje sea el de retropropagación (Backpropagation) En una red estática las entradas han de ser valores fijos, es decir, no pueden variar en el tiempo por lo que habrá que implementar un programa intermedio que haga una media aritmética de los valores. Una segunda prueba con la misma red trata de comprobar si sería capaz de reconocer movimientos que estuvieran caracterizados por más de un elemento de esfuerzo. Para ello se vuelven a grabar los movimientos, esta vez en parejas de dos, y el resto del proceso es igual. ABSTRACT. The aim of this project is the implementation of a system able to analyze body movement from cinematic data. This cinematic data was obtained with a previous program. The first step is carrying out a study about the techniques and knowledge existing nowadays related to people movement. It is known that Rudolf Laban was one the greatest exponents of this field and thanks to his observations a relation between personality, mood and the way the person moves was made. Laban coined the term effort, that refers to the way energy generated from a movement is managed and how it is modulated in the sequence, this is a method of describing the inner intention of the person. The effort is divided into 4 categories: weight, space, time and flow, and each of these categories have 2 polarities named elements of effort. These 8 elements typify a movement. We look for movements that are made of these elements so we can quantify them. The movements are recorded with the kinect camera and saved in a csv file. In order to process this data a neural network is chosen owe to its flexibility and capability of processing non-linear inputs. For its implementation it is required a wide study regarding: topology, activation functions, different types of learning methods and training algorithms among others. The neural network for this project will have 2 hidden layers, it will be static and follow a feedforward process ruled by backpropagation. In a static net the inputs must be fixed, this means they cannot vary in time, so we will have to implement an intermediate program to calculate the average of our data. A second test for our net will be checking its ability to recognize more than one effort element in just one movement. In order to do this all the movements are recorded again but this time in pairs, the rest of the process remains the same.

More information

Item ID: 33687
DC Identifier: http://oa.upm.es/33687/
OAI Identifier: oai:oa.upm.es:33687
Deposited by: Biblioteca Universitaria Campus Sur
Deposited on: 26 Jan 2015 16:00
Last Modified: 26 Jan 2015 16:01
  • Logo InvestigaM (UPM)
  • Logo GEOUP4
  • Logo Open Access
  • Open Access
  • Logo Sherpa/Romeo
    Check whether the anglo-saxon journal in which you have published an article allows you to also publish it under open access.
  • Logo Dulcinea
    Check whether the spanish journal in which you have published an article allows you to also publish it under open access.
  • Logo de Recolecta
  • Logo del Observatorio I+D+i UPM
  • Logo de OpenCourseWare UPM