A gradient-enhanced large-deformation continuum damage model for fibre-reinforced materials

Waffenschmidt, Tobias; Polindara López, Cesar Andrés; Menzel, A. y Blanco Ibáñez, Sergio (2014). A gradient-enhanced large-deformation continuum damage model for fibre-reinforced materials. "Computer Methods in Applied Mechanics and Engineering", v. 268 ; pp. 801-842. ISSN 0045-7825. https://doi.org/10.1016/j.cma.2013.10.013.


Título: A gradient-enhanced large-deformation continuum damage model for fibre-reinforced materials
  • Waffenschmidt, Tobias
  • Polindara López, Cesar Andrés
  • Menzel, A.
  • Blanco Ibáñez, Sergio
Tipo de Documento: Artículo
Título de Revista/Publicación: Computer Methods in Applied Mechanics and Engineering
Fecha: 1 Enero 2014
Volumen: 268
Palabras Clave Informales: Gradient-enhanced damage; Large deformations; Finite element method; Anisotropic biological tissues; Abaqus UEL; Arc-length method
Escuela: E.T.S.I. Caminos, Canales y Puertos (UPM)
Departamento: Mecánica de Medios Continuos y Teoría de Estructuras
Licencias Creative Commons: Reconocimiento - Sin obra derivada - No comercial

Texto completo

Vista Previa
PDF (Document Portable Format) - Se necesita un visor de ficheros PDF, como GSview, Xpdf o Adobe Acrobat Reader
Descargar (3MB) | Vista Previa


A non-local gradient-based damage formulation within a geometrically non-linear setting is presented. The hyperelastic constitutive response at local material point level is governed by a strain energy which is additively composed of an isotropic matrix and of an anisotropic fibre-reinforced material, respectively. The inelastic constitutive response is governed by a scalar [1–d]-type damage formulation, where only the anisotropic elastic part is assumed to be affected by the damage. Following the concept in Dimitrijević and Hackl [28], the local free energy function is enhanced by a gradient-term. This term essentially contains the gradient of the non-local damage variable which, itself, is introduced as an additional independent variable. In order to guarantee the equivalence between the local and non-local damage variable, a penalisation term is incorporated within the free energy function. Based on the principle of minimum total potential energy, a coupled system of Euler–Lagrange equations, i.e., the balance of linear momentum and the balance of the non-local damage field, is obtained and solved in weak form. The resulting coupled, highly non-linear system of equations is symmetric and can conveniently be solved by a standard incremental-iterative Newton–Raphson-type solution scheme. Several three-dimensional displacement- and force-driven boundary value problems—partially motivated by biomechanical application—highlight the mesh-objective characteristics and constitutive properties of the model and illustratively underline the capabilities of the formulation proposed

Más información

ID de Registro: 35940
Identificador DC: http://oa.upm.es/35940/
Identificador OAI: oai:oa.upm.es:35940
Identificador DOI: 10.1016/j.cma.2013.10.013
URL Oficial: http://www.sciencedirect.com/science/article/pii/S004578251300265X
Depositado por: Memoria Investigacion
Depositado el: 08 Jul 2015 13:29
Ultima Modificación: 08 Jul 2015 13:29
  • GEO_UP4
  • Open Access
  • Open Access
  • Sherpa-Romeo
    Compruebe si la revista anglosajona en la que ha publicado un artículo permite también su publicación en abierto.
  • Dulcinea
    Compruebe si la revista española en la que ha publicado un artículo permite también su publicación en abierto.
  • Recolecta
  • InvestigaM
  • Observatorio I+D+i UPM
  • OpenCourseWare UPM