FragFlow: automated fragment detection in scientific workflows

Garijo Verdejo, Daniel; Corcho, Oscar; Gil, Yolanda; Gutman, Boris A.; Dinov, Ivo D.; Thompson, Paul y Toga, Arthur W. (2014). FragFlow: automated fragment detection in scientific workflows. En: "10th IEEE International Conference on e-Science", 20-24 Oct 2014, Guaruja, Sao Paulo, Brasil. ISBN 978-1-4799-4288-6. pp. 281-290.

Descripción

Título: FragFlow: automated fragment detection in scientific workflows
Autor/es:
  • Garijo Verdejo, Daniel
  • Corcho, Oscar
  • Gil, Yolanda
  • Gutman, Boris A.
  • Dinov, Ivo D.
  • Thompson, Paul
  • Toga, Arthur W.
Tipo de Documento: Ponencia en Congreso o Jornada (Artículo)
Título del Evento: 10th IEEE International Conference on e-Science
Fechas del Evento: 20-24 Oct 2014
Lugar del Evento: Guaruja, Sao Paulo, Brasil
Título del Libro: eScience 2014: proceedings
Fecha: 2014
ISBN: 978-1-4799-4288-6
Volumen: 2
Materias:
Palabras Clave Informales: Scientific workflow; Workflow fragment; Workflow reuse; LONI pipeline
Escuela: E.T.S. de Ingenieros Informáticos (UPM)
Departamento: Inteligencia Artificial
Licencias Creative Commons: Reconocimiento - Sin obra derivada - No comercial

Texto completo

[img]
Vista Previa
PDF (Document Portable Format) - Se necesita un visor de ficheros PDF, como GSview, Xpdf o Adobe Acrobat Reader
Descargar (1MB) | Vista Previa

Resumen

Scientific workflows provide the means to define, execute and reproduce computational experiments. However, reusing existing workflows still poses challenges for workflow designers. Workflows are often too large and too specific to reuse in their entirety, so reuse is more likely to happen for fragments of workflows. These fragments may be identified manually by users as sub-workflows, or detected automatically. In this paper we present the FragFlow approach, which detects workflow fragments automatically by analyzing existing workflow corpora with graph mining algorithms. FragFlow detects the most common workflow fragments, links them to the original workflows and visualizes them. We evaluate our approach by comparing FragFlow results against user-defined sub-workflows from three different corpora of the LONI Pipeline system. Based on this evaluation, we discuss how automated workflow fragment detection could facilitate workflow reuse.

Proyectos asociados

TipoCódigoAcrónimoResponsableTítulo
Sin especificarIIS-1344272Sin especificarSin especificarSin especificar
Sin especificarICER-1343800Sin especificarSin especificarSin especificar

Más información

ID de Registro: 36726
Identificador DC: http://oa.upm.es/36726/
Identificador OAI: oai:oa.upm.es:36726
URL Oficial: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6972235
Depositado por: Memoria Investigacion
Depositado el: 10 May 2016 12:15
Ultima Modificación: 16 Nov 2017 09:46
  • Open Access
  • Open Access
  • Sherpa-Romeo
    Compruebe si la revista anglosajona en la que ha publicado un artículo permite también su publicación en abierto.
  • Dulcinea
    Compruebe si la revista española en la que ha publicado un artículo permite también su publicación en abierto.
  • Recolecta
  • e-ciencia
  • Observatorio I+D+i UPM
  • OpenCourseWare UPM