Age regression from soft aligned face images using low computational resources

Bekios, Juan; Buenaposada Biencito, José Miguel y Baumela Molina, Luis (2011). Age regression from soft aligned face images using low computational resources. En: "5th Conference of Pattern Recognition and Image Analysis, IbPRIA 2011", 08-10 Jun 2011, Las Palmas de Gran Canaria, España. ISBN 978-3-642-21256-7. pp. 281-288.

Descripción

Título: Age regression from soft aligned face images using low computational resources
Autor/es:
  • Bekios, Juan
  • Buenaposada Biencito, José Miguel
  • Baumela Molina, Luis
Tipo de Documento: Ponencia en Congreso o Jornada (Artículo)
Título del Evento: 5th Conference of Pattern Recognition and Image Analysis, IbPRIA 2011
Fechas del Evento: 08-10 Jun 2011
Lugar del Evento: Las Palmas de Gran Canaria, España
Título del Libro: Pattern Recognition and Image Analysis
Fecha: 2011
ISBN: 978-3-642-21256-7
Volumen: 6669
Materias:
Escuela: E.T.S. de Ingenieros Informáticos (UPM)
Departamento: Inteligencia Artificial
Licencias Creative Commons: Reconocimiento - Sin obra derivada - No comercial

Texto completo

[img]
Vista Previa
PDF (Document Portable Format) - Se necesita un visor de ficheros PDF, como GSview, Xpdf o Adobe Acrobat Reader
Descargar (129kB) | Vista Previa

Resumen

The initial step in most facial age estimation systems consists of accurately aligning a model to the output of a face detector (e.g. an Active Appearance Model). This fitting process is very expensive in terms of computational resources and prone to get stuck in local minima. This makes it impractical for analysing faces in resource limited computing devices. In this paper we build a face age regressor that is able to work directly on faces cropped using a state-of-the-art face detector. Our procedure uses K nearest neighbours (K-NN) regression with a metric based on a properly tuned Fisher Linear Discriminant Analysis (LDA) projection matrix. On FG-NET we achieve a state-of-the-art Mean Absolute Error (MAE) of 5.72 years with manually aligned faces. Using face images cropped by a face detector we get a MAE of 6.87 years in the same database. Moreover, most of the algorithms presented in the literature have been evaluated on single database experiments and therefore, they report optimistically biased results. In our cross-database experiments we get a MAE of roughly 12 years, which would be the expected performance in a real world application.

Proyectos asociados

TipoCódigoAcrónimoResponsableTítulo
Gobierno de EspañaTIN2010-19654Sin especificarSin especificarSin especificar
Gobierno de EspañaCSD2007-00018Sin especificarSin especificarSin especificar

Más información

ID de Registro: 38536
Identificador DC: http://oa.upm.es/38536/
Identificador OAI: oai:oa.upm.es:38536
URL Oficial: http://www.springer.com/us/book/9783642212567
Depositado por: Memoria Investigacion
Depositado el: 14 Mar 2016 12:32
Ultima Modificación: 14 Mar 2016 12:32
  • Open Access
  • Open Access
  • Sherpa-Romeo
    Compruebe si la revista anglosajona en la que ha publicado un artículo permite también su publicación en abierto.
  • Dulcinea
    Compruebe si la revista española en la que ha publicado un artículo permite también su publicación en abierto.
  • Recolecta
  • e-ciencia
  • Observatorio I+D+i UPM
  • OpenCourseWare UPM