Manufacturing of self-passivating tungsten based alloys by different powder metallurgical routes

Calvo, A.; Ordás, N.; Iturriza, I.; Pastor Caño, Jose Ignacio; Tejado Garrido, Elena Maria; Palacios García, Teresa y García-Rosales, C. (2016). Manufacturing of self-passivating tungsten based alloys by different powder metallurgical routes. "Physica Scripta", v. 2016 (n. T167); pp. 1-6. ISSN 0031-8949. https://doi.org/10.1088/0031-8949/T167/1/014041.

Descripción

Título: Manufacturing of self-passivating tungsten based alloys by different powder metallurgical routes
Autor/es:
  • Calvo, A.
  • Ordás, N.
  • Iturriza, I.
  • Pastor Caño, Jose Ignacio
  • Tejado Garrido, Elena Maria
  • Palacios García, Teresa
  • García-Rosales, C.
Tipo de Documento: Artículo
Título de Revista/Publicación: Physica Scripta
Fecha: 19 Enero 2016
Volumen: 2016
Materias:
Palabras Clave Informales: Self-passivating tungsten alloys, plasma-facing material, mechanical alloying, HIP
Escuela: E.T.S.I. Caminos, Canales y Puertos (UPM)
Departamento: Ciencia de los Materiales
Licencias Creative Commons: Reconocimiento - Sin obra derivada - No comercial

Texto completo

[img]
Vista Previa
PDF (Document Portable Format) - Se necesita un visor de ficheros PDF, como GSview, Xpdf o Adobe Acrobat Reader
Descargar (1MB) | Vista Previa

Resumen

Self-passivating tungsten based alloys will provide a major safety advantage compared to pure tungsten when used as first wall armor of future fusion reactors, due to the formation of a protective oxide layer which prevents the formation of volatile and radioactive WO3 in case of a loss of coolant accident with simultaneous air ingress. Bulk WCr10Ti2 alloys were manufactured by two different powder metallurgical routes: (1) mechanical alloying (MA) followed by hot isostatic pressing (HIP) of metallic capsules, and (2) MA, compaction, pressureless sintering in H2 and subsequent HIPing without encapsulation. Both routes resulted in fully dense materials with homogeneous microstructure and grain sizes of 300 nm and 1 μm, respectively. The content of impurities remained unchanged after HIP, but it increased after sintering due to binder residue. It was not possible to produce large samples by route (2) due to difficulties in the uniaxial compaction stage. Flexural strength and fracture toughness measured on samples produced by route (1) revealed a ductile-to-brittle-transition temperature (DBTT) of about 950 °C. The strength increased from room temperature to 800 °C, decreasing significantly in the plastic region. An increase of fracture toughness is observed around the DBTT.

Más información

ID de Registro: 40471
Identificador DC: http://oa.upm.es/40471/
Identificador OAI: oai:oa.upm.es:40471
Identificador DOI: 10.1088/0031-8949/T167/1/014041
URL Oficial: http://iopscience.iop.org/article/10.1088/0031-8949/T167/1/014041/meta;jsessionid=998EF9C562FFD6C946FB7C5EC079E9CB.ip-10-40-1-98
Depositado por: Memoria Investigacion
Depositado el: 02 Jun 2016 16:08
Ultima Modificación: 02 Jun 2016 16:08
  • Open Access
  • Open Access
  • Sherpa-Romeo
    Compruebe si la revista anglosajona en la que ha publicado un artículo permite también su publicación en abierto.
  • Dulcinea
    Compruebe si la revista española en la que ha publicado un artículo permite también su publicación en abierto.
  • Recolecta
  • e-ciencia
  • Observatorio I+D+i UPM
  • OpenCourseWare UPM