A GEOBIA methodology for fragmented agricultural landscapes

García Pedrero, Ángel Mario; Gonzalo Martín, Consuelo; Fonseca Luengo, David y Lillo Saavedra, Mario (2015). A GEOBIA methodology for fragmented agricultural landscapes. "Remote sensing", v. 7 (n. 1); pp. 767-787. ISSN 2072-4292. https://doi.org/10.3390/rs70100767.

Descripción

Título: A GEOBIA methodology for fragmented agricultural landscapes
Autor/es:
  • García Pedrero, Ángel Mario
  • Gonzalo Martín, Consuelo
  • Fonseca Luengo, David
  • Lillo Saavedra, Mario
Tipo de Documento: Artículo
Título de Revista/Publicación: Remote sensing
Fecha: 2015
Volumen: 7
Materias:
Palabras Clave Informales: Remote sensing; Image analysis; GEOBIA; Superpixels
Escuela: E.T.S. de Ingenieros Informáticos (UPM)
Departamento: Arquitectura y Tecnología de Sistemas Informáticos
Licencias Creative Commons: Reconocimiento - Sin obra derivada - No comercial

Texto completo

[img]
Vista Previa
PDF (Document Portable Format) - Se necesita un visor de ficheros PDF, como GSview, Xpdf o Adobe Acrobat Reader
Descargar (3MB) | Vista Previa

Resumen

Very high resolution remotely sensed images are an important tool for monitoring fragmented agricultural landscapes, which allows farmers and policy makers to make better decisions regarding management practices. An object-based methodology is proposed for automatic generation of thematic maps of the available classes in the scene, which combines edge-based and superpixel processing for small agricultural parcels. The methodology employs superpixels instead of pixels as minimal processing units, and provides a link between them and meaningful objects (obtained by the edge-based method) in order to facilitate the analysis of parcels. Performance analysis on a scene dominated by agricultural small parcels indicates that the combination of both superpixel and edge-based methods achieves a classification accuracy slightly better than when those methods are performed separately and comparable to the accuracy of traditional object-based analysis, with automatic approach.

Más información

ID de Registro: 40657
Identificador DC: http://oa.upm.es/40657/
Identificador OAI: oai:oa.upm.es:40657
Identificador DOI: 10.3390/rs70100767
URL Oficial: http://www.mdpi.com/2072-4292/7/1/767
Depositado por: Memoria Investigacion
Depositado el: 26 Oct 2016 15:11
Ultima Modificación: 26 Oct 2016 15:11
  • Open Access
  • Open Access
  • Sherpa-Romeo
    Compruebe si la revista anglosajona en la que ha publicado un artículo permite también su publicación en abierto.
  • Dulcinea
    Compruebe si la revista española en la que ha publicado un artículo permite también su publicación en abierto.
  • Recolecta
  • e-ciencia
  • Observatorio I+D+i UPM
  • OpenCourseWare UPM