Building intuition of iron evolution during solar cell processing through analysis of different process models

Morishige, Ashley E.; Laine, Hannu S.; Schön, Jonas; Haarahiltunen, Antti; Hofstetter, Jasmin; Cañizo Nadal, Carlos del; Schubert, Martin C.; Savin, Hele y Buonassisi, Tonio (2015). Building intuition of iron evolution during solar cell processing through analysis of different process models. "Applied Physics A", v. 120 (n. 4); pp. 1357-1373. ISSN 0947-8396. https://doi.org/10.1007/s00339-015-9317-7.

Descripción

Título: Building intuition of iron evolution during solar cell processing through analysis of different process models
Autor/es:
  • Morishige, Ashley E.
  • Laine, Hannu S.
  • Schön, Jonas
  • Haarahiltunen, Antti
  • Hofstetter, Jasmin
  • Cañizo Nadal, Carlos del
  • Schubert, Martin C.
  • Savin, Hele
  • Buonassisi, Tonio
Tipo de Documento: Artículo
Título de Revista/Publicación: Applied Physics A
Fecha: Septiembre 2015
Volumen: 120
Materias:
Escuela: E.T.S.I. Telecomunicación (UPM)
Departamento: Electrónica Física
Licencias Creative Commons: Reconocimiento - Sin obra derivada - No comercial

Texto completo

[img]
Vista Previa
PDF (Document Portable Format) - Se necesita un visor de ficheros PDF, como GSview, Xpdf o Adobe Acrobat Reader
Descargar (6MB) | Vista Previa

Resumen

An important aspect of Process Simulators for photovoltaics is prediction of defect evolution during device fabrication. Over the last twenty years, these tools have accelerated process optimization, and several Process Simulators for iron, a ubiquitous and deleterious impurity in silicon, have been developed. The diversity of these tools can make it difficult to build intuition about the physics governing iron behavior during processing. Thus, in one unified software environment and using self-consistent terminology, we combine and describe three of these Simulators. We vary structural defect distribution and iron precipitation equations to create eight distinct Models, which we then use to simulate different stages of processing. We find that the structural defect distribution influences the final interstitial iron concentration ([Fe-i]) more strongly than the iron precipitation equations. We identify two regimes of iron behavior: (1) diffusivity-limited, in which iron evolution is kinetically limited and bulk [Fe-i] predictions can vary by an order of magnitude or more, and (2) solubility-limited, in which iron evolution is near thermodynamic equilibrium and the Models yield similar results. This rigorous analysis provides new intuition that can inform Process Simulation, material, and process development, and it enables scientists and engineers to choose an appropriate level of Model complexity based on wafer type and quality, processing conditions, and available computation time.

Más información

ID de Registro: 40999
Identificador DC: http://oa.upm.es/40999/
Identificador OAI: oai:oa.upm.es:40999
Identificador DOI: 10.1007/s00339-015-9317-7
URL Oficial: http://link.springer.com/article/10.1007%2Fs00339-015-9317-7
Depositado por: Memoria Investigacion
Depositado el: 25 Jun 2016 08:47
Ultima Modificación: 01 Oct 2016 22:30
  • Open Access
  • Open Access
  • Sherpa-Romeo
    Compruebe si la revista anglosajona en la que ha publicado un artículo permite también su publicación en abierto.
  • Dulcinea
    Compruebe si la revista española en la que ha publicado un artículo permite también su publicación en abierto.
  • Recolecta
  • e-ciencia
  • Observatorio I+D+i UPM
  • OpenCourseWare UPM