Evolutionary computing and particle filtering: a hardware-based motion estimation system

Rodríguez, Alfonso y Moreno González, Félix Antonio (2015). Evolutionary computing and particle filtering: a hardware-based motion estimation system. "IEEE Transactions on Computers", v. 64 (n. 11); pp. 3140-3152. ISSN 0018-9340. https://doi.org/10.1109/TC.2015.2401015.

Descripción

Título: Evolutionary computing and particle filtering: a hardware-based motion estimation system
Autor/es:
  • Rodríguez, Alfonso
  • Moreno González, Félix Antonio
Tipo de Documento: Artículo
Título de Revista/Publicación: IEEE Transactions on Computers
Fecha: 2015
Volumen: 64
Materias:
Palabras Clave Informales: Embedded systems, evolutionary computing, FPGAs, particle filtering
Escuela: Centro de Electrónica Industrial (CEI) (UPM)
Departamento: Automática, Ingeniería Eléctrica y Electrónica e Informática Industrial
Licencias Creative Commons: Reconocimiento - Sin obra derivada - No comercial

Texto completo

[img]
Vista Previa
PDF (Document Portable Format) - Se necesita un visor de ficheros PDF, como GSview, Xpdf o Adobe Acrobat Reader
Descargar (6MB) | Vista Previa

Resumen

Particle filters constitute themselves a highly powerful estimation tool, especially when dealing with non-linear non-Gaussian systems. However, traditional approaches present several limitations, which reduce significantly their performance. Evolutionary algorithms, and more specifically their optimization capabilities, may be used in order to overcome particle-filtering weaknesses. In this paper, a novel FPGA-based particle filter that takes advantage of evolutionary computation in order to estimate motion patterns is presented. The evolutionary algorithm, which has been included inside the resampling stage, mitigates the known sample impoverishment phenomenon, very common in particle-filtering systems. In addition, a hybrid mutation technique using two different mutation operators, each of them with a specific purpose, is proposed in order to enhance estimation results and make a more robust system. Moreover, implementing the proposed Evolutionary Particle Filter as a hardware accelerator has led to faster processing times than different software implementations of the same algorithm.

Más información

ID de Registro: 41052
Identificador DC: http://oa.upm.es/41052/
Identificador OAI: oai:oa.upm.es:41052
Identificador DOI [BETA]: 10.1109/TC.2015.2401015
URL Oficial: http://ieeexplore.ieee.org/document/7035029/
Depositado por: Memoria Investigacion
Depositado el: 03 Abr 2017 18:01
Ultima Modificación: 03 Abr 2017 18:01
  • Open Access
  • Open Access
  • Sherpa-Romeo
    Compruebe si la revista anglosajona en la que ha publicado un artículo permite también su publicación en abierto.
  • Dulcinea
    Compruebe si la revista española en la que ha publicado un artículo permite también su publicación en abierto.
  • Recolecta
  • e-ciencia
  • Observatorio I+D+i UPM
  • OpenCourseWare UPM