Application of the Boundary Method to the determination of the properties of the beam cross-sections

Samartín, Avelino; Moreno González, Carlos y Tabuenca Perchin, Pedro (2000). Application of the Boundary Method to the determination of the properties of the beam cross-sections. En: "IASS-IACM 2000", 4-7 de Junio, 2000, La Canea, Creta (Grecia). pp. 1-21.

Descripción

Título: Application of the Boundary Method to the determination of the properties of the beam cross-sections
Autor/es:
  • Samartín, Avelino
  • Moreno González, Carlos
  • Tabuenca Perchin, Pedro
Tipo de Documento: Ponencia en Congreso o Jornada (Artículo)
Título del Evento: IASS-IACM 2000
Fechas del Evento: 4-7 de Junio, 2000
Lugar del Evento: La Canea, Creta (Grecia)
Título del Libro: IASS-IACM 2000 : proceedings of the Fourth International Colloquium on Computation of Shell & Spatial Structures
Fecha: 2000
Materias:
Escuela: E.T.S.I. Caminos, Canales y Puertos (UPM)
Departamento: Mecánica de Medios Continuos y Teoría de Estructuras
Licencias Creative Commons: Reconocimiento - Sin obra derivada - No comercial

Texto completo

[img]
Vista Previa
PDF (Document Portable Format) - Se necesita un visor de ficheros PDF, como GSview, Xpdf o Adobe Acrobat Reader
Descargar (992kB) | Vista Previa

Resumen

Using the 3-D equations of linear elasticity and the asylllptotic expansion methods in terms of powers of the beam cross-section area as small parameter different beam theories can be obtained, according to the last term kept in the expansion. If it is used only the first two terms of the asymptotic expansion the classical beam theories can be recovered without resort to any "a priori" additional hypotheses. Moreover, some small corrections and extensions of the classical beam theories can be found and also there exists the possibility to use the asymptotic general beam theory as a basis procedure for a straightforward derivation of the stiffness matrix and the equivalent nodal forces of the beam. In order to obtain the above results a set of functions and constants only dependent on the cross-section of the beam it has to be computed them as solutions of different 2-D laplacian boundary value problems over the beam cross section domain. In this paper two main numerical procedures to solve these boundary value pf'oblems have been discussed, namely the Boundary Element Method (BEM) and the Finite Element Method (FEM). Results for some regular and geometrically simple cross-sections are presented and compared with ones computed analytically. Extensions to other arbitrary cross-sections are illustrated.

Más información

ID de Registro: 41148
Identificador DC: http://oa.upm.es/41148/
Identificador OAI: oai:oa.upm.es:41148
Depositado por: Biblioteca ETSI Caminos
Depositado el: 14 Jun 2016 06:33
Ultima Modificación: 14 Jun 2016 06:33
  • Open Access
  • Open Access
  • Sherpa-Romeo
    Compruebe si la revista anglosajona en la que ha publicado un artículo permite también su publicación en abierto.
  • Dulcinea
    Compruebe si la revista española en la que ha publicado un artículo permite también su publicación en abierto.
  • Recolecta
  • e-ciencia
  • Observatorio I+D+i UPM
  • OpenCourseWare UPM