Towards a learning analytics approach for supporting discovery and reuse of OER: an approach based on Social Networks Analysis and Linked Open Data

Piedra Pullaguari, Nelson Oswaldo; Chicaiza Espinosa, Janneth Alexandra; López Vargas, Jorge y Tovar Caro, Edmundo (2015). Towards a learning analytics approach for supporting discovery and reuse of OER: an approach based on Social Networks Analysis and Linked Open Data. En: "2015 IEEE Global Engineering Education Conference (EDUCON)", 18-20 Mar 2015, Tallinn, Estonia. ISBN 978-1-4799-1908-6. pp. 978-988. https://doi.org/10.1109/EDUCON.2015.7096092.

Descripción

Título: Towards a learning analytics approach for supporting discovery and reuse of OER: an approach based on Social Networks Analysis and Linked Open Data
Autor/es:
  • Piedra Pullaguari, Nelson Oswaldo
  • Chicaiza Espinosa, Janneth Alexandra
  • López Vargas, Jorge
  • Tovar Caro, Edmundo
Tipo de Documento: Ponencia en Congreso o Jornada (Artículo)
Título del Evento: 2015 IEEE Global Engineering Education Conference (EDUCON)
Fechas del Evento: 18-20 Mar 2015
Lugar del Evento: Tallinn, Estonia
Título del Libro: Proceedings of 2015 IEEE Global Engineering Education Conference (EDUCON)
Fecha: 2015
ISBN: 978-1-4799-1908-6
Volumen: 1
Materias:
Palabras Clave Informales: OER; Linked data; SNA; Social Networks Analysis; Learning analytics; Data visualization; Architecture
Escuela: E.T.S. de Ingenieros Informáticos (UPM)
Departamento: Lenguajes y Sistemas Informáticos e Ingeniería del Software
Licencias Creative Commons: Reconocimiento - Sin obra derivada - No comercial

Texto completo

[img]
Vista Previa
PDF (Document Portable Format) - Se necesita un visor de ficheros PDF, como GSview, Xpdf o Adobe Acrobat Reader
Descargar (948kB) | Vista Previa

Resumen

The OER movement poses challenges inherent to discovering and reuse digital educational materials from highly heterogeneous and distributed digital repositories. Search engines on today?s Web of documents are based on keyword queries. Search engines don?t provide a sufficiently comprehensive solution to answer a query that permits personalization of open educational materials. To find OER on the Web today, users must first be well informed of which OER repositories potentially contain the data they want and what data model describes these datasets, before using this information to create structured queries. Learning analytics requires not only to retrieve the useful information and knowledge about educational resources, learning processes and relations among learning agents, but also to transform the data gathered in actionable e interoperable information. Linked Data is considered as one of the most effective alternatives for creating global shared information spaces, it has become an interesting approach for discovering and enriching open educational resources data, as well as achieving semantic interoperability and re-use between multiple OER repositories. In this work, an approach based on Semantic Web technologies, the Linked Data guidelines, and Social Network Analysis methods are proposed as a fundamental way to describing, analyzing and visualizing knowledge sharing on OER initiatives.

Proyectos asociados

TipoCódigoAcrónimoResponsableTítulo
Comunidad de MadridS2013/ICE-2715Sin especificarSin especificarSin especificar

Más información

ID de Registro: 45031
Identificador DC: http://oa.upm.es/45031/
Identificador OAI: oai:oa.upm.es:45031
Identificador DOI [BETA]: 10.1109/EDUCON.2015.7096092
URL Oficial: http://ieeexplore.ieee.org/document/7096092/
Depositado por: Memoria Investigacion
Depositado el: 27 Mar 2017 14:52
Ultima Modificación: 27 Mar 2017 14:52
  • Open Access
  • Open Access
  • Sherpa-Romeo
    Compruebe si la revista anglosajona en la que ha publicado un artículo permite también su publicación en abierto.
  • Dulcinea
    Compruebe si la revista española en la que ha publicado un artículo permite también su publicación en abierto.
  • Recolecta
  • e-ciencia
  • Observatorio I+D+i UPM
  • OpenCourseWare UPM