Full text
|
PDF
- Requires a PDF viewer, such as GSview, Xpdf or Adobe Acrobat Reader
Download (1MB) | Preview |
Tello del Castillo, José Ignacio and Friedman, Avner (2002). Stability of solutions of chemotaxis equations in reinforced random walks. "Journal of mathematical analysis and its applications", v. 272 (n. 1); pp. 138-163. ISSN 0022-247X. https://doi.org/https://doi.org/10.1016/S0022-247X(02)00147-6.
Title: | Stability of solutions of chemotaxis equations in reinforced random walks |
---|---|
Author/s: |
|
Item Type: | Article |
Título de Revista/Publicación: | Journal of mathematical analysis and its applications |
Date: | 1 August 2002 |
ISSN: | 0022-247X |
Volume: | 272 |
Subjects: | |
Freetext Keywords: | Chemotaxis; Reinforced random walk; Parabolic equations; Stability of stationary solutions |
Faculty: | E.U. de Informática (UPM) |
Department: | Matemática Aplicada a las Tecnologías de la Información y las Comunicaciones |
Creative Commons Licenses: | Recognition - No derivative works - Non commercial |
|
PDF
- Requires a PDF viewer, such as GSview, Xpdf or Adobe Acrobat Reader
Download (1MB) | Preview |
Abstract In this paper we consider a nonlinear system of differential equations consisting of one parabolic equation and one ordinary differential equation. The system arises in chemotaxis, a process whereby living organisms respond to chemical substance by moving toward higher, or lower, concentrations of the chemical substance, or by aggregating or dispersing. We prove that stationary solutions of the system are asymptotically stable.
Item ID: | 45820 |
---|---|
DC Identifier: | http://oa.upm.es/45820/ |
OAI Identifier: | oai:oa.upm.es:45820 |
DOI: | https://doi.org/10.1016/S0022-247X(02)00147-6 |
Official URL: | http://www.sciencedirect.com/science/article/pii/S0022247X02001476 |
Deposited by: | Memoria Investigacion |
Deposited on: | 24 May 2017 17:33 |
Last Modified: | 24 May 2017 17:33 |