Optical Sensing to Determine Tomato Plant Spacing for Precise Agrochemical Application: Two Scenarios

Martínez Guanter, Jorge; Garrido Izard, Miguel; Valero Ubierna, Constantino; Slaughter, David y Pérez Ruiz, Manuel (2017). Optical Sensing to Determine Tomato Plant Spacing for Precise Agrochemical Application: Two Scenarios. "Sensors", v. 17 (n. 5); pp. 1-19. ISSN 1424-8220. https://doi.org/10.3390/s17051096.

Descripción

Título: Optical Sensing to Determine Tomato Plant Spacing for Precise Agrochemical Application: Two Scenarios
Autor/es:
  • Martínez Guanter, Jorge
  • Garrido Izard, Miguel
  • Valero Ubierna, Constantino
  • Slaughter, David
  • Pérez Ruiz, Manuel
Tipo de Documento: Artículo
Título de Revista/Publicación: Sensors
Fecha: 2017
Volumen: 17
Materias:
Escuela: E.T.S. de Ingeniería Agronómica, Alimentaria y de Biosistemas (UPM)
Departamento: Ingeniería Agroforestal
Licencias Creative Commons: Reconocimiento - Sin obra derivada - No comercial

Texto completo

[img]
Vista Previa
PDF (Document Portable Format) - Se necesita un visor de ficheros PDF, como GSview, Xpdf o Adobe Acrobat Reader
Descargar (784kB) | Vista Previa

Resumen

The feasibility of automated individual crop plant care in vegetable crop fields has increased, resulting in improved efficiency and economic benefits. A systems-based approach is a key feature in the engineering design of mechanization that incorporates precision sensing techniques. The objective of this study was to design new sensing capabilities to measure crop plant spacing under different test conditions (California, USA and Andalucía, Spain). For this study, three different types of optical sensors were used: an optical light-beam sensor (880 nm), a Light Detection and Ranging (LiDAR) sensor (905 nm), and an RGB camera. Field trials were conducted on newly transplanted tomato plants, using an encoder as a local reference system. Test results achieved a 98% accuracy in detection using light-beam sensors while a 96% accuracy on plant detections was achieved in the best of replications using LiDAR. These results can contribute to the decision-making regarding the use of these sensors by machinery manufacturers. This could lead to an advance in the physical or chemical weed control on row crops, allowing significant reductions or even elimination of hand-weeding tasks.

Más información

ID de Registro: 45862
Identificador DC: http://oa.upm.es/45862/
Identificador OAI: oai:oa.upm.es:45862
Identificador DOI: 10.3390/s17051096
URL Oficial: http://www.mdpi.com/1424-8220/17/5/1096
Depositado por: Memoria Investigacion
Depositado el: 17 May 2017 14:25
Ultima Modificación: 17 May 2017 14:25
  • Open Access
  • Open Access
  • Sherpa-Romeo
    Compruebe si la revista anglosajona en la que ha publicado un artículo permite también su publicación en abierto.
  • Dulcinea
    Compruebe si la revista española en la que ha publicado un artículo permite también su publicación en abierto.
  • Recolecta
  • e-ciencia
  • Observatorio I+D+i UPM
  • OpenCourseWare UPM