MIRACLE at ImageCLEFanot 2007: Machine Learning Experiments on Medical Image Annotation

Lana Serrano, Sara; Villena Román, Julio; González Cristóbal, José Carlos y Goñi Menoyo, José Miguel (2008). MIRACLE at ImageCLEFanot 2007: Machine Learning Experiments on Medical Image Annotation. En: "Advances in Multilingual and Multimodal Information Retrieval". Lecture Notes in Computer Science (5152). Springer, Berlin, pp. 597-600. ISBN 978-3-540-85759-4. https://doi.org/10.1007/978-3-540-85760-0_75.

Descripción

Título: MIRACLE at ImageCLEFanot 2007: Machine Learning Experiments on Medical Image Annotation
Autor/es:
  • Lana Serrano, Sara
  • Villena Román, Julio
  • González Cristóbal, José Carlos
  • Goñi Menoyo, José Miguel
Tipo de Documento: Sección de Libro
Título del Evento: 8th Workshop of the Cross-Language Evaluation Forum, CLEF 2007
Fechas del Evento: 19/09/2007-21/09/2007
Lugar del Evento: Budapest, Hungria
Título del Libro: Advances in Multilingual and Multimodal Information Retrieval
Fecha: 2008
ISBN: 978-3-540-85759-4
Materias:
Palabras Clave Informales: Medical image - image annotation - classification - IRMA code - axis - learning algorithms - nearest-neighbour - machine learning
Escuela: E.U.I.T. Telecomunicación (UPM) [antigua denominación]
Departamento: Ingeniería y Arquitecturas Telemáticas [hasta 2014]
Grupo Investigación UPM: Grupo de Sistemas Inteligentes
Licencias Creative Commons: Reconocimiento - Sin obra derivada - No comercial

Texto completo

[img]
Vista Previa
PDF (Document Portable Format) - Se necesita un visor de ficheros PDF, como GSview, Xpdf o Adobe Acrobat Reader
Descargar (122kB) | Vista Previa

Resumen

This paper describes the participation of MIRACLE research consortium at the ImageCLEF Medical Image Annotation task of ImageCLEF 2007. Our areas of expertise do not include image analysis, thus we approach this task as a machine-learning problem, regardless of the domain. FIRE is used as a black-box algorithm to extract different groups of image features that are later used for training different classifiers based on kNN algorithm in order to predict the IRMA code. The main idea behind the definition of our experiments is to evaluate whether an axis-by-axis prediction is better than a prediction by pairs of axes or the complete code, or vice versa.

Más información

ID de Registro: 4652
Identificador DC: http://oa.upm.es/4652/
Identificador OAI: oai:oa.upm.es:4652
Identificador DOI: 10.1007/978-3-540-85760-0_75
URL Oficial: http://www.springerlink.com/content/g4g017066t511253/
Depositado por: Memoria Investigacion
Depositado el: 20 Oct 2010 09:57
Ultima Modificación: 20 Abr 2016 13:47
  • Open Access
  • Open Access
  • Sherpa-Romeo
    Compruebe si la revista anglosajona en la que ha publicado un artículo permite también su publicación en abierto.
  • Dulcinea
    Compruebe si la revista española en la que ha publicado un artículo permite también su publicación en abierto.
  • Recolecta
  • e-ciencia
  • Observatorio I+D+i UPM
  • OpenCourseWare UPM