MIRACLE at ImageCLEFanot 2007: Machine Learning Experiments on Medical Image Annotation

Lana Serrano, Sara and Villena Román, Julio and González Cristóbal, José Carlos and Goñi Menoyo, José Miguel (2008). MIRACLE at ImageCLEFanot 2007: Machine Learning Experiments on Medical Image Annotation. In: "Advances in Multilingual and Multimodal Information Retrieval". Lecture Notes in Computer Science (5152). Springer, Berlin, pp. 597-600. ISBN 978-3-540-85759-4. https://doi.org/10.1007/978-3-540-85760-0_75.

Description

Title: MIRACLE at ImageCLEFanot 2007: Machine Learning Experiments on Medical Image Annotation
Author/s:
  • Lana Serrano, Sara
  • Villena Román, Julio
  • González Cristóbal, José Carlos
  • Goñi Menoyo, José Miguel
Item Type: Book Section
Event Title: 8th Workshop of the Cross-Language Evaluation Forum, CLEF 2007
Event Dates: 19/09/2007-21/09/2007
Event Location: Budapest, Hungria
Title of Book: Advances in Multilingual and Multimodal Information Retrieval
Date: 2008
ISBN: 978-3-540-85759-4
Subjects:
Freetext Keywords: Medical image - image annotation - classification - IRMA code - axis - learning algorithms - nearest-neighbour - machine learning
Faculty: E.U.I.T. Telecomunicación (UPM)
Department: Ingeniería y Arquitecturas Telemáticas [hasta 2014]
UPM's Research Group: Grupo de Sistemas Inteligentes
Creative Commons Licenses: Recognition - No derivative works - Non commercial

Full text

[img]
Preview
PDF - Requires a PDF viewer, such as GSview, Xpdf or Adobe Acrobat Reader
Download (122kB) | Preview

Abstract

This paper describes the participation of MIRACLE research consortium at the ImageCLEF Medical Image Annotation task of ImageCLEF 2007. Our areas of expertise do not include image analysis, thus we approach this task as a machine-learning problem, regardless of the domain. FIRE is used as a black-box algorithm to extract different groups of image features that are later used for training different classifiers based on kNN algorithm in order to predict the IRMA code. The main idea behind the definition of our experiments is to evaluate whether an axis-by-axis prediction is better than a prediction by pairs of axes or the complete code, or vice versa.

More information

Item ID: 4652
DC Identifier: http://oa.upm.es/4652/
OAI Identifier: oai:oa.upm.es:4652
DOI: 10.1007/978-3-540-85760-0_75
Official URL: http://www.springerlink.com/content/g4g017066t511253/
Deposited by: Memoria Investigacion
Deposited on: 20 Oct 2010 09:57
Last Modified: 20 Apr 2016 13:47
  • Logo InvestigaM (UPM)
  • Logo GEOUP4
  • Logo Open Access
  • Open Access
  • Logo Sherpa/Romeo
    Check whether the anglo-saxon journal in which you have published an article allows you to also publish it under open access.
  • Logo Dulcinea
    Check whether the spanish journal in which you have published an article allows you to also publish it under open access.
  • Logo de Recolecta
  • Logo del Observatorio I+D+i UPM
  • Logo de OpenCourseWare UPM