Evolution of silicon bulk lifetime during III-V-on-Si multijunction solar cell epitaxial growth

García García, Elisa; Carlin, J.; Grassman, T. J.; Martín, Diego; Rey-Stolle Prado, Ignacio y Ringel, Steven A. (2016). Evolution of silicon bulk lifetime during III-V-on-Si multijunction solar cell epitaxial growth. "Progress in Photovoltaics", v. 24 (n. 5); pp. 634-644. ISSN 1062-7995. https://doi.org/10.1002/pip.2703.

Descripción

Título: Evolution of silicon bulk lifetime during III-V-on-Si multijunction solar cell epitaxial growth
Autor/es:
  • García García, Elisa
  • Carlin, J.
  • Grassman, T. J.
  • Martín, Diego
  • Rey-Stolle Prado, Ignacio
  • Ringel, Steven A.
Tipo de Documento: Artículo
Título de Revista/Publicación: Progress in Photovoltaics
Fecha: 2016
Volumen: 24
Materias:
Palabras Clave Informales: III–V on silicon; GaAsP/Si; heteroepitaxy; MJSC; metamorphic growth; minority carrier lifetime; bottom subcell
Escuela: E.T.S.I. Telecomunicación (UPM)
Departamento: Electrónica Física
Licencias Creative Commons: Reconocimiento - Sin obra derivada - No comercial

Texto completo

[img]
Vista Previa
PDF (Document Portable Format) - Se necesita un visor de ficheros PDF, como GSview, Xpdf o Adobe Acrobat Reader
Descargar (2MB) | Vista Previa

Resumen

The evolution of Si bulk minority carrier lifetime during the heteroepitaxial growth of III–V on Si multijunction solar cell structures via metal-organic chemical vapor deposition (MOCVD) has been analyzed. In particular, the impact on Si lifetime resulting from the four distinct phases within the overall MOCVD-based III–V/Si growth process were studied: (1) the Si homoepitaxial emitter/cap layer; (2) GaP heteroepitaxial nucleation; (3) bulk GaP film growth; and (4) thick GaAsyP1-y compositionally graded metamorphic buffer growth. During Phase 1 (Si homoepitaxy), an approximately two order of magnitude reduction in the Si minority carrier lifetime was observed, from about 450 to ≤1 µs. However, following the GaP nucleation (Phase 2) and thicker film (Phase 3) growths, the lifetime was found to increase by about an order of magnitude. The thick GaAsyP1-y graded buffer was then found to provide further recovery back to around the initial starting value. The most likely general mechanism behind the observed lifetime evolution is as follows: lifetime degradation during Si homoepitaxy because of the formation of thermally induced defects within the Si bulk, with subsequent lifetime recovery due to passivation by fast-diffusing atomic hydrogen coming from precursor pyrolysis, especially the group-V hydrides (PH3, AsH3), during the III–V growth. These results indicate that the MOCVD growth methodology used to create these target III–V/Si solar cell structures has a substantial and dynamic impact on the minority carrier lifetime within the Si substrate.

Proyectos asociados

TipoCódigoAcrónimoResponsableTítulo
Gobierno de EspañaTEC2012-37286Sin especificarSin especificarSin especificar
FP7283798NGCPVUNIVERSIDAD POLITECNICA DE MADRIDA new generation of concentrator photovoltaic cells, modules and systems

Más información

ID de Registro: 47892
Identificador DC: http://oa.upm.es/47892/
Identificador OAI: oai:oa.upm.es:47892
Identificador DOI: 10.1002/pip.2703
URL Oficial: http://onlinelibrary.wiley.com/doi/10.1002/pip.2703/abstract;jsessionid=7FA07E83054D79766F2888845EE5A7EF.f04t02
Depositado por: Memoria Investigacion
Depositado el: 19 Dic 2017 17:22
Ultima Modificación: 19 Dic 2017 17:22
  • Open Access
  • Open Access
  • Sherpa-Romeo
    Compruebe si la revista anglosajona en la que ha publicado un artículo permite también su publicación en abierto.
  • Dulcinea
    Compruebe si la revista española en la que ha publicado un artículo permite también su publicación en abierto.
  • Recolecta
  • e-ciencia
  • Observatorio I+D+i UPM
  • OpenCourseWare UPM