Growing Self-Organizing Maps for Data Analysis

Delgado Sanz, Maria Soledad; Gonzalo Martín, Consuelo; Martínez Izquierdo, María Estíbaliz y Arquero Hidalgo, Águeda (2009). Growing Self-Organizing Maps for Data Analysis. En: "Encyclopedia of Artificial Intelligence". IGI Publications, EEUU, pp. 781-787. ISBN 978-1-59904-849-9. https://doi.org/10.4018/978-1-59904-849-9.

Descripción

Título: Growing Self-Organizing Maps for Data Analysis
Autor/es:
  • Delgado Sanz, Maria Soledad
  • Gonzalo Martín, Consuelo
  • Martínez Izquierdo, María Estíbaliz
  • Arquero Hidalgo, Águeda
Tipo de Documento: Sección de Libro
Título del Libro: Encyclopedia of Artificial Intelligence
Fecha: 2009
ISBN: 978-1-59904-849-9
Volumen: 3
Materias:
Palabras Clave Informales: Artificial Neural Networks, Data Mining,Exploratory Data Analysis, Growing Cell Structures, Knowledge Visualization, Self-Organizing Map, Unsupervised Learning.
Escuela: Facultad de Informática (UPM) [antigua denominación]
Departamento: Arquitectura y Tecnología de Sistemas Informáticos
Licencias Creative Commons: Reconocimiento - Sin obra derivada - No comercial

Texto completo

[img]
Vista Previa
PDF (Document Portable Format) - Se necesita un visor de ficheros PDF, como GSview, Xpdf o Adobe Acrobat Reader
Descargar (879kB) | Vista Previa

Resumen

Currently, there exist many research areas that produce large multivariable datasets that are difficult to visualize in order to extract useful information. Kohonen self organizing maps have been used successfully in the visualization and analysis of multidimensional data. In this work, a projection technique that compresses multidimensional datasets into two dimensional space using growing self-organizing maps is described. With this embedding scheme, traditional Kohonen visualization methods have been implemented using growing cell structures networks. New graphical map display have been compared with Kohonen graphs using two groups of simulated data and one group of real multidimensional data selected from a satellite scene.

Más información

ID de Registro: 4951
Identificador DC: http://oa.upm.es/4951/
Identificador OAI: oai:oa.upm.es:4951
Identificador DOI: 10.4018/978-1-59904-849-9
URL Oficial: http://www.igi-global.com/Bookstore/TitleDetails.aspx?TitleId=343&DetailsType=Description
Depositado por: Memoria Investigacion
Depositado el: 18 Nov 2010 11:25
Ultima Modificación: 20 Abr 2016 13:57
  • Open Access
  • Open Access
  • Sherpa-Romeo
    Compruebe si la revista anglosajona en la que ha publicado un artículo permite también su publicación en abierto.
  • Dulcinea
    Compruebe si la revista española en la que ha publicado un artículo permite también su publicación en abierto.
  • Recolecta
  • e-ciencia
  • Observatorio I+D+i UPM
  • OpenCourseWare UPM