Key Structural Features of Boreal Forests May Be Detected Directly Using L-Moments from Airborne Lidar Data

Valbuena Puebla, Ruben; Maltamo, Matti; Mehtätalo, Lauri y Packalen, Petteri (2017). Key Structural Features of Boreal Forests May Be Detected Directly Using L-Moments from Airborne Lidar Data. "Remote Sensing of Environment", v. 194 ; pp. 437-446. ISSN 0034-4257. https://doi.org/10.1016/j.rse.2016.10.024.

Descripción

Título: Key Structural Features of Boreal Forests May Be Detected Directly Using L-Moments from Airborne Lidar Data
Autor/es:
  • Valbuena Puebla, Ruben
  • Maltamo, Matti
  • Mehtätalo, Lauri
  • Packalen, Petteri
Tipo de Documento: Artículo
Título de Revista/Publicación: Remote Sensing of Environment
Fecha: Junio 2017
Volumen: 194
Materias:
Palabras Clave Informales: Airborne laser scanning; L-moments; Gini coefficient;L-coefficient of variation;Forest structure; Tree size inequality; Shade-tolerance.
Escuela: E.T.S.I. Montes (UPM) [antigua denominación]
Departamento: Economía y Gestión Forestal [hasta 2014]
Licencias Creative Commons: Reconocimiento - Sin obra derivada - No comercial

Texto completo

[img]
Vista Previa
PDF (Document Portable Format) - Se necesita un visor de ficheros PDF, como GSview, Xpdf o Adobe Acrobat Reader
Descargar (14MB) | Vista Previa

Resumen

This article introduces a novel methodology for automated classification of forest areas from airborne laser scanning (ALS) datasets based on two direct and simple rules: L-coefficient of variation Lcv = 0.5 and L-skewness Lskew = 0, thresholds based on descriptors of the mathematical properties of ALS height distributions. We observed that, while Lcv > 0.5 may represent forests with large tree size inequality, Lskew > 0 can be an indicator for areas lacking a closed dominant canopy. Lcv = 0.5 discriminated forests with trees of approximately equal sizes (even tree size classes) from those with large tree size inequality (uneven tree size classes) with kappa κ = 0.48 and overall accuracy OA = 92.4%, while Lskew = 0 segregated oligophotic and euphotic zones with κ = 0.56 and OA = 84.6%. We showed that a supervised classification could only marginally improve some of these accuracy results. The rule-based approach presents a simple method for detecting structural properties key to tree competition and potential for natural regeneration. The study was carried out with low-density datasets from the national program on ALS surveying of Finland, which shows potential for replication with the ALS datasets typically acquired at nation-wide scales. Since the presented method was based on deductive mathematical rules for describing distributions, it stands out from inductive supervised and unsupervised classification methods which are more commonly used in remote sensing. Therefore, it presents an opportunity for deducing physical relations which could partly eliminate the need for supporting ALS applications with field plot data for training and modelling, at least in Boreal forest ecosystems.

Más información

ID de Registro: 49935
Identificador DC: http://oa.upm.es/49935/
Identificador OAI: oai:oa.upm.es:49935
Identificador DOI: 10.1016/j.rse.2016.10.024
URL Oficial: https://www.sciencedirect.com/science/article/pii/S0034425716303960
Depositado por: Memoria Investigacion
Depositado el: 09 Abr 2018 09:08
Ultima Modificación: 09 Abr 2018 09:08
  • GEO_UP4
  • Open Access
  • Open Access
  • Sherpa-Romeo
    Compruebe si la revista anglosajona en la que ha publicado un artículo permite también su publicación en abierto.
  • Dulcinea
    Compruebe si la revista española en la que ha publicado un artículo permite también su publicación en abierto.
  • Recolecta
  • InvestigaM
  • Observatorio I+D+i UPM
  • OpenCourseWare UPM