A Fluid-Dynamic Numerical Model for the Selective Laser Melting of High-Thickness Metallic Layers

Cordovilla Baró, Francisco; Garzón, Miguel; Muñoz, Diego Alejandro; Díaz, Javier; García Beltrán, Ángel y Ocaña Moreno, José Luis (2017). A Fluid-Dynamic Numerical Model for the Selective Laser Melting of High-Thickness Metallic Layers. En: "LiM 2017 International conference on Lasers in Manufacturing", 26/29.06.2017, Munich - Germany. pp. 1-10.

Descripción

Título: A Fluid-Dynamic Numerical Model for the Selective Laser Melting of High-Thickness Metallic Layers
Autor/es:
  • Cordovilla Baró, Francisco
  • Garzón, Miguel
  • Muñoz, Diego Alejandro
  • Díaz, Javier
  • García Beltrán, Ángel
  • Ocaña Moreno, José Luis
Tipo de Documento: Ponencia en Congreso o Jornada (Artículo)
Título del Evento: LiM 2017 International conference on Lasers in Manufacturing
Fechas del Evento: 26/29.06.2017
Lugar del Evento: Munich - Germany
Título del Libro: LiM 2017 International conference on Lasers in Manufacturing
Fecha: Junio 2017
Materias:
Palabras Clave Informales: SLM; ALE Method; Marangoni Convection; Fluid Dynamics
Escuela: E.T.S.I. Industriales (UPM)
Departamento: Física Aplicada e Ingeniería de Materiales
Licencias Creative Commons: Reconocimiento - Sin obra derivada - No comercial

Texto completo

[img]
Vista Previa
PDF (Document Portable Format) - Se necesita un visor de ficheros PDF, como GSview, Xpdf o Adobe Acrobat Reader
Descargar (1MB) | Vista Previa

Resumen

Productivity in the Selective Laser Melting Process (SLM) is directly related with the thickness of the powder bed that is repeatedly applied, at every increment, in the growing of consolidated material in the additive manufacturing process. Although most of the relevant phenomena (limited diffusivity associated to particles contact, phase changes, gradients of surface tension associated with Marangoni convection, or even recoil pressure) are considered in the models with small bed thicknesses (roughly 20 µm ? 40 µm), in the case of larger thicknesses (between 100 µm and 200 µm) these factors strongly influence the size and shape of the fusion bath leading to a non trivial geometry of the final consolidated material. The present work proposes the use of the Arbitrary Lagrangean-Eulerian method (ALE method) to solve the thermal and Navier-Stokes equations in the frame of a free-moving discretization to predict simultaneously the space-time temperature evolution and the associated fusion bath dynamics. It allows for using a continuous domain to represent the powder bed, which, instead of a particle model approach, is advantageously compatible with realistic process parameters, where long paths are covered by the laser. The model was validated with experimental data using Inconel as working material, showing a good degree of agreement.

Más información

ID de Registro: 50015
Identificador DC: http://oa.upm.es/50015/
Identificador OAI: oai:oa.upm.es:50015
URL Oficial: https://www.invest-in-bavaria.com/en/info-centre/events/detail/1402-lim-2017.html
Depositado por: Memoria Investigacion
Depositado el: 19 Jun 2018 14:33
Ultima Modificación: 30 Jun 2018 22:30
  • GEO_UP4
  • Open Access
  • Open Access
  • Sherpa-Romeo
    Compruebe si la revista anglosajona en la que ha publicado un artículo permite también su publicación en abierto.
  • Dulcinea
    Compruebe si la revista española en la que ha publicado un artículo permite también su publicación en abierto.
  • Recolecta
  • InvestigaM
  • Observatorio I+D+i UPM
  • OpenCourseWare UPM