Expressive Speech Identifications based on Hidden Markov Model

Lebai Lutfi, Syaheerah Binti; Montero Martínez, Juan Manuel; Barra Chicote, Roberto; Lucas Cuesta, Juan Manuel y Gallardo Antolín, Ascensión (2009). Expressive Speech Identifications based on Hidden Markov Model. En: "Proceedings of the International Conference on Health Informatics, HEALTHINF 2009", 14/01/2009 - 17/01/2009, Porto, Portugal. ISBN 978-3-642-11720-6.

Descripción

Título: Expressive Speech Identifications based on Hidden Markov Model
Autor/es:
  • Lebai Lutfi, Syaheerah Binti
  • Montero Martínez, Juan Manuel
  • Barra Chicote, Roberto
  • Lucas Cuesta, Juan Manuel
  • Gallardo Antolín, Ascensión
Tipo de Documento: Ponencia en Congreso o Jornada (Artículo)
Título del Evento: Proceedings of the International Conference on Health Informatics, HEALTHINF 2009
Fechas del Evento: 14/01/2009 - 17/01/2009
Lugar del Evento: Porto, Portugal
Título del Libro: Proceedings of the Second International Conference on Health Informatics, HEALTHINF 2009
Fecha: 2009
ISBN: 978-3-642-11720-6
Volumen: 52
Materias:
Palabras Clave Informales: Affective computing, Biometrics, Speech processing, Emotion identification.
Escuela: E.T.S.I. Telecomunicación (UPM)
Departamento: Ingeniería Electrónica
Licencias Creative Commons: Reconocimiento - Sin obra derivada - No comercial

Texto completo

[img]
Vista Previa
PDF (Document Portable Format) - Se necesita un visor de ficheros PDF, como GSview, Xpdf o Adobe Acrobat Reader
Descargar (548kB) | Vista Previa

Resumen

This paper concerns a sub-area of a larger research field of Affective Computing, focusing on the employment of affect-recognition systems using speech modality. It is proposed that speech-based affect identification systems could play an important role as next generation biometric identification systems that are aimed at determining a person’s ‘state of mind’, or psycho-physiological state. The possible areas for the deployment of voice-affect recognition technology are discussed. Additionally, the experiments and results for emotion identification in speech based on a Hidden Markov Models (HMMs) classifier are also presented. The result from experiment suggests that certain speech feature is more precise to identify certain emotional state, and that happiness is the most difficult emotion to detect.

Más información

ID de Registro: 5576
Identificador DC: http://oa.upm.es/5576/
Identificador OAI: oai:oa.upm.es:5576
URL Oficial: http://www.healthinf.biostec.org/HEALTHINF2009/index.htm
Depositado por: Memoria Investigacion
Depositado el: 22 Dic 2010 12:19
Ultima Modificación: 20 Abr 2016 14:21
  • Open Access
  • Open Access
  • Sherpa-Romeo
    Compruebe si la revista anglosajona en la que ha publicado un artículo permite también su publicación en abierto.
  • Dulcinea
    Compruebe si la revista española en la que ha publicado un artículo permite también su publicación en abierto.
  • Recolecta
  • e-ciencia
  • Observatorio I+D+i UPM
  • OpenCourseWare UPM