Digitalization Capacity for Knowledge Acquisition: Learning from Health Monitoring

Sun, Shengjing (2020). Digitalization Capacity for Knowledge Acquisition: Learning from Health Monitoring. Thesis (Doctoral), E.T.S.I. Industriales (UPM). https://doi.org/10.20868/UPM.thesis.63094.

Description

Title: Digitalization Capacity for Knowledge Acquisition: Learning from Health Monitoring
Author/s:
  • Sun, Shengjing
Contributor/s:
  • Ordieres Meré, Joaquín
Item Type: Thesis (Doctoral)
Date: 2020
Subjects:
Faculty: E.T.S.I. Industriales (UPM)
Department: Ingeniería de Organización, Administración de Empresas y Estadística
Creative Commons Licenses: Recognition - No derivative works - Non commercial

Full text

[img] PDF - Users in campus UPM only until 20 April 2021 - Requires a PDF viewer, such as GSview, Xpdf or Adobe Acrobat Reader
Download (5MB)

Abstract

Digital transformation boosts the integration of intelligent data into all areas of society, from personal streams of life-span, an organization business workflows, to the whole ecosystem of different industries. The continuous connectivity and interaction in the digital world pave the way to learn knowledge from the variety of massive data. The Internet of Things (IoT) is a promising practice in the digitalization process. Its basic spirit is to thrust a paradigm that everything (machine and people) can be seamlessly connected into an IoT network by sensors. Toward the next frontier society 5.0, it is aimed for a prosperous human-centered society where people can have a high quality of life. However, general IoT architectures and data value chain models are still device/platform-specific, which lacks necessary emphasis on people dimension. Health as the core aspect of people has a significant impact on their quality of life. The adverse health factors may cross the entire lifespan: from home to workplace, from commute to work or fitness, and even elderly people care homes. To center the research work, the research question was pinpointed: How to accelerate and enhance people’s health and well-being in the IoT data value chain? On the premise of research status-quo and the pinpointed research question, four specific research objectives were defined as follows. 1. Enhance people dimension, especially health and well-being perspective in conventional IoT architectures. 2. Develop continuous long term monitoring solutions to support better health management. 3. Learn psychological and physical health impact from (e.g., workers) a group of people over the activities. 4. Accelerate healthrelated data sharing with security trust and privacy assurance. To fulfill the research objectives, the action research method was employed as a theoretical approach to analyze and implement the research; a guiding framework was designed to set up the research theme and context, the applied key concepts, enabling technologies, devices, and developed prototypes were introduced under the guiding framework; furthermore, several study designs were detailed presented including experimental setup, data collection, and relevant data analysis method. Toward a human-centered society, the future of IoT is also seeking enhanced people-centered solutions. To accelerate and facilitate health-related data-driven knowledge acquisition and data value chain to society, organizations, and individuals, the research leverages advance technologies such as IoT, Smart Wearables, DLT, and machine learning techniques. To summarize, the study focuses on the health dimension, the thesis generalizes highly the main contributions. 1. The study proposed IoT application architectures such as Healthy operator 4.0 architecture and proved their feasibility through real-world application cases in the industry. 2. Three longterm monitoring solutions were developed using low-cost IoT devices and successfully adopted in practical usage to continuously collect health-related parameters. 3. Different data mining approaches and machine learning methods were investigated and compared to learn health impacts over the activities from a group of people. The method chosen was proved to be capable of better understanding people’s behavioral patterns and hidden rules, by the real-world empirical analysis conducted in both Spain and the USA. 4. A data sharing solution was designed in the study, that integrates DLT (IOTA Tangle) to IoT data management, by which data transparency and data ownership can be implemented under a secure, fee-less, and trust data sharing mechanism. The value produced by the contributions is reflected on the individual level, organization level, and society level, which lies in societal aspects such as smart environment, industry 4.0, and smart city. With data-driven AI technology booming, big data analytic era comes. The future of work is now. The advance technology such as deep learning, Hadoop, Kubernetes, and Spark can be employed to dig knowledge out of data. The IoT big data analytic can achieve an improved understanding of data for individuals, organizations, and society, to make efficient and effective decisions. ----------RESUMEN---------- La transformación digital acelera la integración de la inteligencia de datos en todas las áreas de la sociedad, desde los flujos de datos personales relativos a las actividades diarias, pasando por los flujos de trabajo de procesos de negocio en las organizaciones, hasta alcanzar todo el ecosistema de relaciones inter-industrias. La conectividad universal continua y la interacción en el universo digital facilita la obtención de conocimiento desde una gran variedad de datos masivos. El internet de las cosas (IoT) es una práctica prometedora in la digitalización de procesos. Su espíritu primario es potenciar un paradigma en el que tanto las máquinas como la gente pueden ser conectados de un modo integrado en las redes IoT de sensores. Manteniendo el foco en la siguiente frontera, "sociedad 5.0", se busca desarrollar una sociedad que potencie la dimensión humana, donde la gente podrá desarrollar una elevada calidad de vida. No obstante, tanto la arquitectura general del IoT como los flujos de valor de los datos obtenidos son aún específicos para los dispositivos o plataformas, lo que dificulta poner el énfasis en la dimensión humana general. La salud, como un aspecto central de interés para las personas tiene un impacto muy significativo en su calidad de vida. Factores negativos en relación a la salud pueden ser persistentes en el tiempo, tanto en ámbitos domésticos como laborales, y pueden ocurrir tanto en el transporte diario como en actividades deportivas o en el cuidado de personas de edad avanzada. Para centrar el trabajo de la tesis la pregunta de investigación ha sido resaltada: ¿Cómo acelerar y potenciar la dimensión salud y bienestar en la población a través de los flujos de valor correspondientes a esos datos? Sobre las premisas definidas pro el status-quo de investigación y por la pregunta de investigación cuatro objetivos específicos de investigación han sido definidos: 1.-Potenciar la dimensión humana, en particular salud y bienestar en las arquitecturas basadas en IoT. 2.- Desarrollar soluciones de monitorización de parámetros a largo plazo, que permitan una mejor gestión de los factores con influencia en la salud. 3.- Comprender el impacto en la salud tanto física como psicológica en grupos de población (por ejemplo trabajadores) durante el desempeño de su actividad. 4.- Acelerar el uso compartido de los datos relativos a la salud, cumpliendo criterios de confianza y privacidad suficientes. Para alcanzar los objetivos de investigación el método de investigación activa ha sido empleado como aproximación teórica para analizar e implementar la investigación. Se ha desarrollado un marco de referencia que guíe el proceso y permita establecer el tema de investigación y su contexto, los conceptos clave, las tecnologías habilitantes, los dispositivos, así como desarrollar los prototipos de acuerdo al marco desarrollado. Adicionalmente, varios estudios de detalle han sido desarrollados, incluyendo su ciclo de vida de configuración, captura de datos y análisis de los mismos. El futuro del IoT enfocado a una sociedad centrada en la dimensión humana busca también desarrollar soluciones centradas en la gente. Para acelerar y facilitar la generación y adquisición de conocimiento proveniente de los flujos de datos que pueda beneficiar a la sociedad (organizaciones e individuos), la investigación balancea tecnologías avanzadas, tales como IoT, dispositivos inteligentes, Libros Mayores Distribuidos y técnicas de aprendizaje automático. El estudio se centra en la dimensión de salud y de modo resumido sus principales contribuciones son: 1.- Proponer aplicaciones de arquitecturas IoT como Operario Saludable 4.0, demostrando su factibilidad a través de aplicaciones con casos de uso industriales. 2.- Desarrollar tres soluciones de monitorización de largo plazo usando dispositivos IoT de bajo coste con una implementación satisfactoria en las aplicaciones reales que permite la recogida de datos relativos a parámetros relacionados con salud. 3.- Investigar diferentes aproximaciones de minado de datos y métodos de aprendizaje automático, así como comparar sus resultados para comprender mejor las implicaciones sanitarias de comportamientos cuando se consideran agrupados. La selección del método elegido ha mostrado su utilidad en explicar los patrones de comportamiento de la gente y determinadas reglas no explícitas, al observar comportamientos de grupos de personas tanto en España como en E.E.U.U. 4.- Diseñar una solución de compartición de datos que integra la tecnología DLT (Tangle de IoTA) para facilitar el manejo de datos de IoT, de modo que transparencia y propiedad de los mismos estén aseguradas a través de mecanismos confiables y sin coste de transacción. El valor creado a través de las contribuciones de esta tesis se reflejan tanto a nivel individual como de sociedad en general, vinculado a gestión ambiental inteligente, industria 4.0 y ciudades inteligentes. Con las aplicaciones de inteligencia artificial aprovechando los flujos de datos en plena explosión, la era de creación de valor usando la analítica de datos masiva está en sus comienzos. Tecnologías avanzadas como el aprendizaje profundo, Hadoop, Kubernetes y Spark pueden ser empleadas para destilar conocimiento desde los datos. La analítica de datos masiva a partir de IoT se espera que contribuya a transformar el conocimiento tanto para individuos, como organizaciones y sociedad en general, facilitando tomas de decisiones más eficientes y efectivas.

More information

Item ID: 63094
DC Identifier: http://oa.upm.es/63094/
OAI Identifier: oai:oa.upm.es:63094
DOI: 10.20868/UPM.thesis.63094
Deposited by: Archivo Digital UPM 2
Deposited on: 23 Nov 2020 08:41
Last Modified: 23 Nov 2020 08:41
  • Logo InvestigaM (UPM)
  • Logo GEOUP4
  • Logo Open Access
  • Open Access
  • Logo Sherpa/Romeo
    Check whether the anglo-saxon journal in which you have published an article allows you to also publish it under open access.
  • Logo Dulcinea
    Check whether the spanish journal in which you have published an article allows you to also publish it under open access.
  • Logo de Recolecta
  • Logo del Observatorio I+D+i UPM
  • Logo de OpenCourseWare UPM