Autocalibration with the Minimum Number of Cameras with Known Pixel Shape

Ronda Prieto, José Ignacio; Valdés Morales, Antonio y Gallego Bonet, Guillermo (2014). Autocalibration with the Minimum Number of Cameras with Known Pixel Shape. "Journal of Mathematical Imaging and Vision", v. 50 (n. 3); pp. 179-198. ISSN 0924-9907. https://doi.org/10.1007/s10851-014-0492-5.

Descripción

Título: Autocalibration with the Minimum Number of Cameras with Known Pixel Shape
Autor/es:
  • Ronda Prieto, José Ignacio
  • Valdés Morales, Antonio
  • Gallego Bonet, Guillermo
Tipo de Documento: Artículo
Título de Revista/Publicación: Journal of Mathematical Imaging and Vision
Fecha: Noviembre 2014
Volumen: 50
Materias:
Palabras Clave Informales: Camera autocalibration, Varying parameters, Square pixels, Three-dimensional reconstruction, Absolute Conic, Six-Line Conic Variety
Escuela: E.T.S.I. Telecomunicación (UPM)
Departamento: Señales, Sistemas y Radiocomunicaciones
Grupo Investigación UPM: http://www.gti.ssr.upm.es/~jir/comp_vis/SLCV/index.html
Licencias Creative Commons: Reconocimiento - Sin obra derivada - No comercial

Texto completo

[img]
Vista Previa
PDF (Document Portable Format) (Autocalibration with the Minimum Number of Cameras with Known Pixel Shape) - Se necesita un visor de ficheros PDF, como GSview, Xpdf o Adobe Acrobat Reader
Descargar (4MB) | Vista Previa

Resumen

In 3D reconstruction, the recovery of the calibration parameters of the cameras is paramount since it provides metric information about the observed scene, e.g., measures of angles and ratios of distances. Autocalibration enables the estimation of the camera parameters without using a calibration device, but by enforcing simple constraints on the camera parameters. In the absence of information about the internal camera parameters such as the focal length and the principal point, the knowledge of the camera pixel shape is usually the only available constraint. Given a projective reconstruction of a rigid scene, we address the problem of the autocalibration of a minimal set of cameras with known pixel shape and otherwise arbitrarily varying intrinsic and extrinsic parameters. We propose an algorithm that only requires 5 cameras (the theoretical minimum), thus halving the number of cameras required by previous algorithms based on the same constraint. To this purpose, we introduce as our basic geometric tool the six-line conic variety (SLCV), consisting in the set of planes intersecting six given lines of 3D space in points of a conic. We show that the set of solutions of the Euclidean upgrading problem for three cameras with known pixel shape can be parameterized in a computationally efficient way. This parameterization is then used to solve autocalibration from five or more cameras, reducing the three-dimensional search space to a two-dimensional one. We provide experiments with real images showing the good performance of the technique.

Más información

ID de Registro: 10417
Identificador DC: http://oa.upm.es/10417/
Identificador OAI: oai:oa.upm.es:10417
Identificador DOI: 10.1007/s10851-014-0492-5
Depositado por: Dr Guillermo Gallego Bonet
Depositado el: 03 Mar 2012 20:31
Ultima Modificación: 29 May 2015 10:52
  • Open Access
  • Open Access
  • Sherpa-Romeo
    Compruebe si la revista anglosajona en la que ha publicado un artículo permite también su publicación en abierto.
  • Dulcinea
    Compruebe si la revista española en la que ha publicado un artículo permite también su publicación en abierto.
  • Recolecta
  • e-ciencia
  • Observatorio I+D+i UPM
  • OpenCourseWare UPM