Tool wear monitoring using neuro-fuzzy techniques: a comparative study in a turning process

Gajate, Agustín; Haber Guerra, Rodolfo E.; Toro Matamoros, Raúl Mario del; Vega, Pastora y Bustillo, Andrés (2012). Tool wear monitoring using neuro-fuzzy techniques: a comparative study in a turning process. "Journal of Intelligent Manufacturing", v. 23 (n. 3); pp. 869-882. ISSN 0956-5515. https://doi.org/10.1007/s10845-010-0443-y.

Descripción

Título: Tool wear monitoring using neuro-fuzzy techniques: a comparative study in a turning process
Autor/es:
  • Gajate, Agustín
  • Haber Guerra, Rodolfo E.
  • Toro Matamoros, Raúl Mario del
  • Vega, Pastora
  • Bustillo, Andrés
Tipo de Documento: Artículo
Título de Revista/Publicación: Journal of Intelligent Manufacturing
Fecha: Junio 2012
Volumen: 23
Materias:
Escuela: Centro de Automática y Robótica (CAR) UPM-CSIC
Departamento: Otro
Licencias Creative Commons: Reconocimiento - Sin obra derivada - No comercial

Texto completo

[img]
Vista Previa
PDF (Document Portable Format) - Se necesita un visor de ficheros PDF, como GSview, Xpdf o Adobe Acrobat Reader
Descargar (4MB) | Vista Previa

Resumen

Tool wear detection is a key issue for tool condition monitoring. The maximization of useful tool life is frequently related with the optimization of machining processes. This paper presents two model-based approaches for tool wear monitoring on the basis of neuro-fuzzy techniques. The use of a neuro-fuzzy hybridization to design a tool wear monitoring system is aiming at exploiting the synergy of neural networks and fuzzy logic, by combining human reasoning with learning and connectionist structure. The turning process that is a well-known machining process is selected for this case study. A four-input (i.e., time, cutting forces, vibrations and acoustic emissions signals) single-output (tool wear rate) model is designed and implemented on the basis of three neuro-fuzzy approaches (inductive, transductive and evolving neuro-fuzzy systems). The tool wear model is then used for monitoring the turning process. The comparative study demonstrates that the transductive neuro-fuzzy model provides better error-based performance indices for detecting tool wear than the inductive neuro-fuzzy model and than the evolving neuro-fuzzy model.

Más información

ID de Registro: 21245
Identificador DC: http://oa.upm.es/21245/
Identificador OAI: oai:oa.upm.es:21245
Identificador DOI: 10.1007/s10845-010-0443-y
URL Oficial: http://link.springer.com/article/10.1007%2Fs10845-010-0443-y
Depositado por: Memoria Investigacion
Depositado el: 06 Nov 2013 19:31
Ultima Modificación: 21 Abr 2016 11:23
  • Open Access
  • Open Access
  • Sherpa-Romeo
    Compruebe si la revista anglosajona en la que ha publicado un artículo permite también su publicación en abierto.
  • Dulcinea
    Compruebe si la revista española en la que ha publicado un artículo permite también su publicación en abierto.
  • Recolecta
  • e-ciencia
  • Observatorio I+D+i UPM
  • OpenCourseWare UPM