Linear latent force models using Gaussian Processes

Luengo García, David; Álvarez, Mauricio A. y Lawrence, Neil D. (2013). Linear latent force models using Gaussian Processes. "IEEE Transactions on Pattern Analysis and Machine Intelligence", v. 35 (n. 11); pp. 2693-2705. ISSN 0162-8828. https://doi.org/10.1109/TPAMI.2013.86.

Descripción

Título: Linear latent force models using Gaussian Processes
Autor/es:
  • Luengo García, David
  • Álvarez, Mauricio A.
  • Lawrence, Neil D.
Tipo de Documento: Artículo
Título de Revista/Publicación: IEEE Transactions on Pattern Analysis and Machine Intelligence
Fecha: Noviembre 2013
Volumen: 35
Materias:
Palabras Clave Informales: Gaussian processes, dynamical systems, multitask learning, motion capture data, spatiotemporal covariances, differential equations
Escuela: E.U.I.T. Telecomunicación (UPM) [antigua denominación]
Departamento: Ingeniería de Circuitos y Sistemas [hasta 2014]
Licencias Creative Commons: Reconocimiento - Sin obra derivada - No comercial

Texto completo

[img]
Vista Previa
PDF (Document Portable Format) - Se necesita un visor de ficheros PDF, como GSview, Xpdf o Adobe Acrobat Reader
Descargar (3MB) | Vista Previa

Resumen

Purely data-driven approaches for machine learning present difficulties when data are scarce relative to the complexity of the model or when the model is forced to extrapolate. On the other hand, purely mechanistic approaches need to identify and specify all the interactions in the problem at hand (which may not be feasible) and still leave the issue of how to parameterize the system. In this paper, we present a hybrid approach using Gaussian processes and differential equations to combine data-driven modeling with a physical model of the system. We show how different, physically inspired, kernel functions can be developed through sensible, simple, mechanistic assumptions about the underlying system. The versatility of our approach is illustrated with three case studies from motion capture, computational biology, and geostatistics.

Más información

ID de Registro: 33207
Identificador DC: http://oa.upm.es/33207/
Identificador OAI: oai:oa.upm.es:33207
Identificador DOI: 10.1109/TPAMI.2013.86
URL Oficial: http://www.computer.org/csdl/trans/tp/2013/11/ttp2013112693-abs.html
Depositado por: Memoria Investigacion
Depositado el: 13 Abr 2015 19:08
Ultima Modificación: 13 Abr 2015 19:08
  • Open Access
  • Open Access
  • Sherpa-Romeo
    Compruebe si la revista anglosajona en la que ha publicado un artículo permite también su publicación en abierto.
  • Dulcinea
    Compruebe si la revista española en la que ha publicado un artículo permite también su publicación en abierto.
  • Recolecta
  • e-ciencia
  • Observatorio I+D+i UPM
  • OpenCourseWare UPM