Fully adaptive gaussian mixture metropolis-hastings algorithm

Luengo García, David y Martino, Luca (2013). Fully adaptive gaussian mixture metropolis-hastings algorithm. En: "38th International Conference on Acoustics, Speech, and Signal Processing (ICASSP)", 26/05/2013 - 31/05/2013, Vancouver (Canadá). ISBN 978-1-4799-0356-6. pp. 6148-6152.

Descripción

Título: Fully adaptive gaussian mixture metropolis-hastings algorithm
Autor/es:
  • Luengo García, David
  • Martino, Luca
Tipo de Documento: Ponencia en Congreso o Jornada (Artículo)
Título del Evento: 38th International Conference on Acoustics, Speech, and Signal Processing (ICASSP)
Fechas del Evento: 26/05/2013 - 31/05/2013
Lugar del Evento: Vancouver (Canadá)
Título del Libro: Proceedings of the 2013 IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP 2013)
Fecha: 2013
ISBN: 978-1-4799-0356-6
Materias:
Palabras Clave Informales: Markov Chain Monte Carlo (MCMC), Gaussian mixtures, adaptive Metropolis-Hastings
Escuela: E.U.I.T. Telecomunicación (UPM) [antigua denominación]
Departamento: Ingeniería de Circuitos y Sistemas [hasta 2014]
Licencias Creative Commons: Reconocimiento - Sin obra derivada - No comercial

Texto completo

[img]
Vista Previa
PDF (Document Portable Format) - Se necesita un visor de ficheros PDF, como GSview, Xpdf o Adobe Acrobat Reader
Descargar (1MB) | Vista Previa

Resumen

Markov Chain Monte Carlo methods are widely used in signal processing and communications for statistical inference and stochastic optimization. In this work, we introduce an efficient adaptive Metropolis-Hastings algorithm to draw samples from generic multimodal and multidimensional target distributions. The proposal density is a mixture of Gaussian densities with all parameters (weights, mean vectors and covariance matrices) updated using all the previously generated samples applying simple recursive rules. Numerical results for the one and two-dimensional cases are provided.

Más información

ID de Registro: 33283
Identificador DC: http://oa.upm.es/33283/
Identificador OAI: oai:oa.upm.es:33283
URL Oficial: https://www2.securecms.com/ICASSP2013/default.asp
Depositado por: Memoria Investigacion
Depositado el: 15 Abr 2015 17:24
Ultima Modificación: 15 Abr 2015 17:24
  • Open Access
  • Open Access
  • Sherpa-Romeo
    Compruebe si la revista anglosajona en la que ha publicado un artículo permite también su publicación en abierto.
  • Dulcinea
    Compruebe si la revista española en la que ha publicado un artículo permite también su publicación en abierto.
  • Recolecta
  • e-ciencia
  • Observatorio I+D+i UPM
  • OpenCourseWare UPM