Online Learning-based Robust Visual Tracking for Autonomous Landing of Unmanned Aerial Vehicles

Fu, Changhong; Carrio Fernández, Adrián; Olivares Méndez, Miguel Ángel y Campoy Cervera, Pascual (2014). Online Learning-based Robust Visual Tracking for Autonomous Landing of Unmanned Aerial Vehicles. En: "2014 International Conference on Unmanned Aircraft Systems (ICUAS)", 27 - 30 May 2014, Orlando, FL, USA. ISBN 978-1-4799-2376-2. pp. 649-655.

Descripción

Título: Online Learning-based Robust Visual Tracking for Autonomous Landing of Unmanned Aerial Vehicles
Autor/es:
  • Fu, Changhong
  • Carrio Fernández, Adrián
  • Olivares Méndez, Miguel Ángel
  • Campoy Cervera, Pascual
Tipo de Documento: Ponencia en Congreso o Jornada (Artículo)
Título del Evento: 2014 International Conference on Unmanned Aircraft Systems (ICUAS)
Fechas del Evento: 27 - 30 May 2014
Lugar del Evento: Orlando, FL, USA
Título del Libro: 2014 International Conference on Unmanned Aircraft Systems (ICUAS)
Fecha: 2014
ISBN: 978-1-4799-2376-2
Materias:
Escuela: E.T.S.I. Industriales (UPM)
Departamento: Automática, Ingeniería Electrónica e Informática Industrial [hasta 2014]
Grupo Investigación UPM: Computer Vision CVG
Licencias Creative Commons: Reconocimiento - Sin obra derivada - No comercial

Texto completo

[img]
Vista Previa
PDF (Document Portable Format) - Se necesita un visor de ficheros PDF, como GSview, Xpdf o Adobe Acrobat Reader
Descargar (5MB) | Vista Previa

Resumen

Autonomous landing is a challenging and important technology for both military and civilian applications of Unmanned Aerial Vehicles (UAVs). In this paper, we present a novel online adaptive visual tracking algorithm for UAVs to land on an arbitrary field (that can be used as the helipad) autonomously at real-time frame rates of more than twenty frames per second. The integration of low-dimensional subspace representation method, online incremental learning approach and hierarchical tracking strategy allows the autolanding task to overcome the problems generated by the challenging situations such as significant appearance change, variant surrounding illumination, partial helipad occlusion, rapid pose variation, onboard mechanical vibration (no video stabilization), low computational capacity and delayed information communication between UAV and Ground Control Station (GCS). The tracking performance of this presented algorithm is evaluated with aerial images from real autolanding flights using manually- labelled ground truth database. The evaluation results show that this new algorithm is highly robust to track the helipad and accurate enough for closing the vision-based control loop.

Proyectos asociados

TipoCódigoAcrónimoResponsableTítulo
Gobierno de EspañaDPI2010-20751-C02-01CICYTSin especificarSin especificar
FP7Sin especificarSin especificarSin especificarUECIMUAVS - USA and Europe Cooperation in Mini UAVs. IRSES PROYECT

Más información

ID de Registro: 37649
Identificador DC: http://oa.upm.es/37649/
Identificador OAI: oai:oa.upm.es:37649
URL Oficial: http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6835384
Depositado por: Memoria Investigacion
Depositado el: 14 Sep 2015 16:33
Ultima Modificación: 15 Sep 2015 14:52
  • Open Access
  • Open Access
  • Sherpa-Romeo
    Compruebe si la revista anglosajona en la que ha publicado un artículo permite también su publicación en abierto.
  • Dulcinea
    Compruebe si la revista española en la que ha publicado un artículo permite también su publicación en abierto.
  • Recolecta
  • e-ciencia
  • Observatorio I+D+i UPM
  • OpenCourseWare UPM