Pedestrian Motion Prediction: A Graph Based Approach

Garzón Ramos, David Alfredo; Garzón Oviedo, Mario Andrei y Barrientos Cruz, Antonio (2016). Pedestrian Motion Prediction: A Graph Based Approach. En: "RoboCity16 Open Conference on Future Trends in Robotics", May 26 - 27th 2016, Madrid, Spain. ISBN 978-84-608-8452-1. pp. 309-316.

Descripción

Título: Pedestrian Motion Prediction: A Graph Based Approach
Autor/es:
  • Garzón Ramos, David Alfredo
  • Garzón Oviedo, Mario Andrei
  • Barrientos Cruz, Antonio
Tipo de Documento: Ponencia en Congreso o Jornada (Artículo)
Título del Evento: RoboCity16 Open Conference on Future Trends in Robotics
Fechas del Evento: May 26 - 27th 2016
Lugar del Evento: Madrid, Spain
Título del Libro: RoboCity16 Open Conference on Future Trends in Robotics
Fecha: 27 Mayo 2016
ISBN: 978-84-608-8452-1
Materias:
Palabras Clave Informales: Pedestrian trajectory prediction, Fast Marching, Graph based prediction
Escuela: E.T.S.I. Industriales (UPM)
Departamento: Automática, Ingeniería Eléctrica y Electrónica e Informática Industrial
Grupo Investigación UPM: Robótica y Cibernética RobCib
Licencias Creative Commons: Reconocimiento

Texto completo

[img]
Vista Previa
PDF (Document Portable Format) - Se necesita un visor de ficheros PDF, como GSview, Xpdf o Adobe Acrobat Reader
Descargar (1MB) | Vista Previa

Resumen

A novel pedestrian motion prediction technique is presented in this paper. Its main achievement regards to none previous observation, any knowledge of pedestrian trajectories nor the existence of possible destinations is required; hence making it useful for autonomous surveillance applications. Prediction only requires initial position of the pedestrian and a 2D representation of the scenario as occupancy grid. First, it uses the Fast Marching Method (FMM) to calculate the pedestrian arrival time for each position in the map and then, the likelihood that the pedestrian reaches those positions is estimated. The technique has been tested with synthetic and real scenarios. In all cases, accurate probability maps as well as their representative graphs were obtained with low computational cost.

Proyectos asociados

TipoCódigoAcrónimoResponsableTítulo
Comunidad de MadridS2013/MIT-2748RoboCity2030-III-CMSin especificarRobótica aplicada a la mejora de la calidad de vida de los ciudadanos. fase III
Gobierno de EspañaDPI2014- 56985-RPRICAntonio Barrientos CruzProtección Robotizada de Infraestructuras Críticas

Más información

ID de Registro: 41511
Identificador DC: http://oa.upm.es/41511/
Identificador OAI: oai:oa.upm.es:41511
URL Oficial: http://www.car.upm-csic.es/events/robocity16/
Depositado por: Mario Andrei Garzón Oviedo
Depositado el: 20 Jun 2016 05:41
Ultima Modificación: 18 Ago 2017 10:30
  • Open Access
  • Open Access
  • Sherpa-Romeo
    Compruebe si la revista anglosajona en la que ha publicado un artículo permite también su publicación en abierto.
  • Dulcinea
    Compruebe si la revista española en la que ha publicado un artículo permite también su publicación en abierto.
  • Recolecta
  • e-ciencia
  • Observatorio I+D+i UPM
  • OpenCourseWare UPM