Successful replacement of weekly face-to-face visits by unsupervised smart home telecare in diet-treated gestational diabetes (GD)

Rigla Cros, Mercedes; García Saez, Gema; Villaplana, María; Caballero Ruiz, Estefanía; Pons, Belén; Méndez, Anna; Aguilar, Montserrat; Gómez Aguilera, Enrique J. y Hernando Pérez, María Elena (2015). Successful replacement of weekly face-to-face visits by unsupervised smart home telecare in diet-treated gestational diabetes (GD). En: "American Diabetes Association's 75th Scientific Sessions", 05/06/2015 - 09/06/2015, Boston, EE.UU. pp.. https://doi.org/10.2337/db15-932-1471.

Descripción

Título: Successful replacement of weekly face-to-face visits by unsupervised smart home telecare in diet-treated gestational diabetes (GD)
Autor/es:
  • Rigla Cros, Mercedes
  • García Saez, Gema
  • Villaplana, María
  • Caballero Ruiz, Estefanía
  • Pons, Belén
  • Méndez, Anna
  • Aguilar, Montserrat
  • Gómez Aguilera, Enrique J.
  • Hernando Pérez, María Elena
Tipo de Documento: Ponencia en Congreso o Jornada (Póster)
Título del Evento: American Diabetes Association's 75th Scientific Sessions
Fechas del Evento: 05/06/2015 - 09/06/2015
Lugar del Evento: Boston, EE.UU
Título del Libro: American Diabetes Association's 75th Scientific Sessions
Fecha: 2015
Volumen: 64
Materias:
Escuela: E.T.S.I. Telecomunicación (UPM)
Departamento: Tecnología Fotónica y Bioingeniería
Licencias Creative Commons: Reconocimiento - Sin obra derivada - No comercial

Texto completo

[img]
Vista Previa
PDF (Document Portable Format) - Se necesita un visor de ficheros PDF, como GSview, Xpdf o Adobe Acrobat Reader
Descargar (136kB) | Vista Previa

Resumen

We have developed a computer-based smart telemedicine system with the aim of giving automated support to GD patients while insulin is not required. The smart telemedicine system combines a platform for remote monitoring of diabetes-related parameters with a decision-support system (DSS) based on expert knowledge that generates automatic feedback to patients and/or clinicians. The DSS generates initial and follow-up diet treatments and detects the need to start insulin. Blood glucose (BG) data downloaded to the system from the patient?s glucose meter is automatically classified into mealtime intervals and moments of measurement (preprandial,postprandial) by a classifier based on a decision tree. After downloading BG data and informing on ketonuria fasting status, the patient receives an evaluation of the data and, if needed, a proposal of diet adjustment. In case insulin therapy is advised, the system also informs the responsible doctor who schedules a face-to-face appointment. Sixty-nine patients diagnosed of GD following the NDDG criteria were randomized (2:1) to use the system (active group) or to attend the usual face-to-face visits (control group). At baseline, groups were comparable regarding all the clinical variables tested. During the follow-up period (36 days (1-141)), no correction of the automated-proposed treatment was done by doctors. Mean number of BG downloads by patients was 10.2±8 (1-29) and the mean number of changes in diet automatically proposed was 0.46. Mean number of BG values/day, mean BG and the % of BG values above 140 mg/dl, pre-partum HbA1c, and all the perinatal outcomes tested were similar between the groups. Mean number of face-to-face visits performed including first visit and training was 4.8±2.8 for the control group and 1.4±0.6 for the active group (p<0.001). In conclusion, this computer-based smart telemedicine system successfully replaced face-to-face follow-up visits in women diagnosed of GD while insulin therapy was not required.

Más información

ID de Registro: 44044
Identificador DC: http://oa.upm.es/44044/
Identificador OAI: oai:oa.upm.es:44044
Identificador DOI: 10.2337/db15-932-1471
Depositado por: Memoria Investigacion
Depositado el: 20 Dic 2016 16:48
Ultima Modificación: 20 Dic 2016 16:48
  • Open Access
  • Open Access
  • Sherpa-Romeo
    Compruebe si la revista anglosajona en la que ha publicado un artículo permite también su publicación en abierto.
  • Dulcinea
    Compruebe si la revista española en la que ha publicado un artículo permite también su publicación en abierto.
  • Recolecta
  • e-ciencia
  • Observatorio I+D+i UPM
  • OpenCourseWare UPM