Segmentation-tracking feedback approach for high-performance video surveillance applications

Cuevas Rodríguez, Carlos and Blanco Adán, Carlos Roberto del and García Santos, Narciso and Jaureguizar Núñez, Fernando (2010). Segmentation-tracking feedback approach for high-performance video surveillance applications. In: "IEEE Southwest Symposium on Image Analysis & Interpretation (SSIAI)", 23-25 de Mayo del 2010, Austin, Tejas, EEUU. ISBN 978-1-4244-7801-9.

Description

Title: Segmentation-tracking feedback approach for high-performance video surveillance applications
Author/s:
  • Cuevas Rodríguez, Carlos
  • Blanco Adán, Carlos Roberto del
  • García Santos, Narciso
  • Jaureguizar Núñez, Fernando
Item Type: Presentation at Congress or Conference (Article)
Event Title: IEEE Southwest Symposium on Image Analysis & Interpretation (SSIAI)
Event Dates: 23-25 de Mayo del 2010
Event Location: Austin, Tejas, EEUU
Title of Book: IEEE Southwest Symposium on Image Analysis & Interpretation (SSIAI)
Date: 14 June 2010
ISBN: 978-1-4244-7801-9
Subjects:
Freetext Keywords: Bayesian methods , Computer vision , Feedback , Image segmentation , Lighting , Object detection , Object segmentation , Predictive models , Video sequences , Video surveillance
Faculty: E.T.S.I. Telecomunicación (UPM)
Department: Señales, Sistemas y Radiocomunicaciones
Creative Commons Licenses: Recognition - No derivative works - Non commercial

Full text

[img]
Preview
PDF - Requires a PDF viewer, such as GSview, Xpdf or Adobe Acrobat Reader
Download (262kB) | Preview

Abstract

Here, a novel and efficient feedback system for moving object segmentation and tracking is proposed. Through the use of non-parametric background-foreground modeling, moving objects are correctly detected in unfavorable situations such as dynamic backgrounds or illumination changes. After detection, objects are tracked by an original multi-object Bayesian tracking algorithm, which achieves satisfactory results under partial and total occlusions. Updating the previously detected foreground data from the information provided by the tracker, the foreground modeling is improved, reducing the color similarity problem.

More information

Item ID: 7269
DC Identifier: http://oa.upm.es/7269/
OAI Identifier: oai:oa.upm.es:7269
Official URL: http://ieeexplore.ieee.org/search/srchabstract.jsp?tp=&arnumber=5483922&queryText%3DSegmentation-tracking+feedback+approach+for+high-performance+video+surveillance+applications%26openedRefinements%3D*%26searchField%3DSearch+All
Deposited by: Doctor Carlos Roberto del Blanco Adán
Deposited on: 27 May 2011 11:48
Last Modified: 20 Apr 2016 16:27
  • Logo InvestigaM (UPM)
  • Logo GEOUP4
  • Logo Open Access
  • Open Access
  • Logo Sherpa/Romeo
    Check whether the anglo-saxon journal in which you have published an article allows you to also publish it under open access.
  • Logo Dulcinea
    Check whether the spanish journal in which you have published an article allows you to also publish it under open access.
  • Logo de Recolecta
  • Logo del Observatorio I+D+i UPM
  • Logo de OpenCourseWare UPM