Automatic Identification of Defects on Eggshell Through a Multispectral Vision System

Lunadei, Loredana and Ruiz García, Luis and Bodria, Luigi and Guidetti, Riccardo (2011). Automatic Identification of Defects on Eggshell Through a Multispectral Vision System. "Food and Bioprocess Technology" ; ISSN 1935-5130. https://doi.org/10.1007/s11947-011-0672-x.

Description

Title: Automatic Identification of Defects on Eggshell Through a Multispectral Vision System
Author/s:
  • Lunadei, Loredana
  • Ruiz García, Luis
  • Bodria, Luigi
  • Guidetti, Riccardo
Item Type: Article
Título de Revista/Publicación: Food and Bioprocess Technology
Date: 2011
ISSN: 1935-5130
Subjects:
Freetext Keywords: Brown egg; eggshell defect; vision system; multispectral image; image processing; automatic identification.
Faculty: E.T.S.I. Agrónomos (UPM) [antigua denominación]
Department: Ingeniería Rural [hasta 2014]
UPM's Research Group: LPF-TAGRALIA
Creative Commons Licenses: None

Full text

[thumbnail of Articolo_Pubblicato_Definitivo.pdf]
Preview
PDF - Requires a PDF viewer, such as GSview, Xpdf or Adobe Acrobat Reader
Download (439kB) | Preview

Abstract

The objective of this research was to develop an off-line artificial vision system to automatically detect defective eggshells, i.e., dirty or cracked eggshells, by employing multispectral images with the final purpose to adapt the system to an on-line grading machine. In particular, this work was focused to study the feasibility of identifying organic stains on brown eggshells (dirty eggshell), caused by blood, feathers, feces, etc., from natural stains, caused by deposits of pigments on the outer layer of clean eggshells. During the analysis a total of 384 eggs were evaluated (clean: 148, dirty: 236). Dirty samples were evaluated visually in order to classify them according to the kind of defect (blood, feathers, and white, clear or dark feces), and clean eggshells were classified on the basis of the colour of the natural stains (clear or dark). For each sample digital images were acquired by employing a Charged Coupled Device (CCD) camera endowed with 15 monochromatic filters (440-940 nm). A Matlab® function was developed in order to automate the process and analyze images, with the aim to classify samples as clean or dirty. The program was constituted by three major steps: first, the research of an opportune combination of monochromatic images in order to isolate the eggshell from the background; second, the detection of the dirt stains; third, the classification of the images samples into the dirty or clean group on the basis of geometric characteristics of the stains (area in pixel). The proposed classification algorithm was able to correctly classify near 98% of the samples with a very low processing time (0.05s). The robustness of the proposed classification was observed applying an external validation to a second set of samples (n = 178), obtaining similar percentage of correctly classified samples (97%).

More information

Item ID: 9612
DC Identifier: https://oa.upm.es/9612/
OAI Identifier: oai:oa.upm.es:9612
DOI: 10.1007/s11947-011-0672-x
Official URL: http://www.springerlink.com/content/07m8504356281v...
Deposited by: Investigador contratado Loredana Lunadei
Deposited on: 09 Nov 2011 06:46
Last Modified: 20 Apr 2016 17:58
  • Logo InvestigaM (UPM)
  • Logo GEOUP4
  • Logo Open Access
  • Open Access
  • Logo Sherpa/Romeo
    Check whether the anglo-saxon journal in which you have published an article allows you to also publish it under open access.
  • Logo Dulcinea
    Check whether the spanish journal in which you have published an article allows you to also publish it under open access.
  • Logo de Recolecta
  • Logo del Observatorio I+D+i UPM
  • Logo de OpenCourseWare UPM